Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7982): 308-314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794184

RESUMO

Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.


Assuntos
Anfíbios , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , Animais , Anfíbios/classificação , Biodiversidade , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Espécies em Perigo de Extinção/estatística & dados numéricos , Espécies em Perigo de Extinção/tendências , Extinção Biológica , Risco , Urodelos/classificação
3.
Dis Aquat Organ ; 153: 51-58, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794841

RESUMO

Ranaviruses can cause mass mortality events in amphibians, thereby becoming a threat to populations that are already facing dramatic declines. Ranaviruses affect all life stages and persist in multiple amphibian hosts. The detrimental effects of ranavirus infections to amphibian populations have already been observed in the UK and in North America. In Central and South America, the virus has been reported in several countries, but the presence of the genus Ranavirus (Rv) in Colombia is unknown. To help fill this knowledge gap, we surveyed for Rv in 60 species of frogs (including one invasive species) in Colombia. We also tested for co-infection with Batrachochytrium dendrobatidis (Bd) in a subset of individuals. For Rv, we sampled 274 vouchered liver tissue samples collected between 2014 and 2019 from 41 localities covering lowlands to mountaintop páramo habitat across the country. Using quantitative polymerase chain reaction (qPCR) and end-point PCR, we detected Rv in 14 individuals from 8 localities, representing 6 species, including 5 native frogs of the genera Osornophryne, Pristimantis and Leptodactylus, and the invasive American bullfrog Rana catesbeiana. Bd was detected in 7 of 140 individuals, with 1 co-infection of Rv and Bd in an R. catesbeiana specimen collected in 2018. This constitutes the first report of ranavirus in Colombia and should set off alarms about this new emerging threat to amphibian populations in the country. Our findings provide some preliminary clues about how and when Rv may have spread and contribute to understanding how the pathogen is distributed globally.


Assuntos
Anfíbios , Infecções por Vírus de DNA , Ranavirus , Animais , Anfíbios/microbiologia , Anfíbios/virologia , Anuros/microbiologia , Anuros/virologia , Batrachochytrium/fisiologia , Coinfecção/veterinária , Colômbia/epidemiologia , Infecções por Vírus de DNA/complicações , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Micoses/complicações , Micoses/veterinária , Rana catesbeiana/microbiologia , Rana catesbeiana/virologia , Ranavirus/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(41): 20382-20387, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548391

RESUMO

Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos , Micoses/veterinária , Animais , Quitridiomicetos/genética , Saúde Global , Micoses/epidemiologia , Micoses/microbiologia
5.
Mol Ecol ; 29(17): 3167-3169, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745298

RESUMO

What happens when two emergent diseases infect the same host? In a From the Cover article in this issue of Molecular Ecology, McDonald et al. (2020) compare transcriptomic responses to co-infection by the two chytrid fungi in the skin, liver and spleen of Eastern newts (Notophthalmus viridescens). Novel molecular tools, such as high-throughput DNA sequencing for genome discovery and transcriptomics, have revolutionized our understanding of host-pathogen interactions and disease ecology (Güimil et al. 2005; Rosenblum et al. 2012). For example, epidemiologists are using genomic data to track the spread of the emergent SARS-CoV-2 in real time, both locally and globally. RNA sequencing (RNA-Seq) is routinely employed to study response to disease in humans, improving disease diagnostics, profiling and development of intervention strategies. Transcriptomic profiles may be particularly informative for emergent diseases, whose pathologies and effect on host phenotype are poorly known. Fungal pathogens increasingly threaten a variety of wild and domesticated organisms (Fisher et al. 2012), and two chytrid fungi attacking amphibians are causing one of the worst losses of vertebrate biodiversity ever recorded (Scheele et al. 2019).


Assuntos
Quitridiomicetos/imunologia , Micoses/veterinária , Salamandridae/imunologia , Animais , Coinfecção/imunologia , Perfilação da Expressão Gênica , Humanos , Fígado/microbiologia , Micoses/imunologia , Micoses/microbiologia , Salamandridae/genética , Salamandridae/microbiologia , Pele/microbiologia , Baço/microbiologia , Transcriptoma/genética
6.
Molecules ; 24(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669405

RESUMO

Amphibian skin is not to be considered a mere tegument; it has a multitude of functions related to respiration, osmoregulation, and thermoregulation, thus allowing the individuals to survive and thrive in the terrestrial environment. Moreover, amphibian skin secretions are enriched with several peptides, which defend the skin from environmental and pathogenic insults and exert many other biological effects. In this work, the beneficial effects of amphibian skin peptides are reviewed, in particular their role in speeding up wound healing and in protection from oxidative stress and UV irradiation. A better understanding of why some species seem to resist several environmental insults can help to limit the ongoing amphibian decline through the development of appropriate strategies, particularly against pathologies such as viral and fungal infections.


Assuntos
Anfíbios/metabolismo , Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Glândulas Exócrinas/metabolismo , Sequestradores de Radicais Livres , Humanos , Peptídeos/química , Substâncias Protetoras/química , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
7.
Ecol Lett ; 21(3): 345-355, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314479

RESUMO

Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities.


Assuntos
Anfíbios , Biodiversidade , Ecossistema , Répteis , Animais , Florestas , Humanos , Metanálise como Assunto , Microclima
8.
Dis Aquat Organ ; 131(3): 233-238, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459295

RESUMO

Amphibian diversity has declined due to the infectious disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Coexistence between amphibian hosts and this pathogen in some locations is attributed to the presence of the cutaneous bacterium Janthinobacterium lividum (Jliv). This microbe inhibits the growth of Bd on the host, reduces morbidity, and improves survival. Andean water frogs in the genus Telmatobius seem to be particularly vulnerable to the disease yet populations of T. intermedius and T. marmoratus persist in southern and central Peru. We investigated the presence of Jliv on these 2 frog species and assessed the relationship of Jliv presence with prevalence and intensity of Bd infection. By sampling 125 frogs from 7 streams (3323-3950 m a.s.l.) and 27 from a city market, we found spatial variation in the mutualism among populations (range 0-40% proportion of Jliv-positives). Overall, 57% of frogs were infected with Bd, 12.5% of frogs hosted both Jliv and Bd, while 7.2% hosted just Jliv. We found that the probability of an individual being infected with Bd was independent of the presence of Jliv; however, we did detect a protective effect of Jliv with respect to intensity of infection. The extent of Jliv distribution in the high Andes stands in stark contrast to the rarity of Jliv on frogs in lower elevation cloud forest biomes.


Assuntos
Quitridiomicetos , Micoses , Animais , Antifúngicos , Anuros , Micoses/veterinária , Peru , Água
9.
Proc Natl Acad Sci U S A ; 112(4): 1083-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583498

RESUMO

Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: removing more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrates; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased detectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturbations to natural systems.


Assuntos
Biomassa , Extinção Biológica , Modelos Biológicos , Animais
10.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28120810

RESUMO

Marsupial frogs have a unique reproductive mode in which females carry eggs enclosed in a sealed dorsal brood pouch. While most anurans are considered to be oviparous with lecithotrophic eggs, the extensively vascularized membrane of the brood pouch in marsupial frogs suggests potential opportunities for nutrient transfer. We tested for matrotrophy in the live-bearing Gastrotheca excubitor (Hemiphractidae), through feeding insects labelled with a 13C-fatty acid and a 15N-amino acid to brooding marsupial frogs. We observed significant increases of δ13C and δ15N in both maternal pouch tissues and embryos, suggesting nutrient transfer. Embryo dry mass also increased with developmental stage, providing further direct evidence for matrotrophy. These results suggest that in addition to gas exchange, the vascularized brood pouch membrane of G. excubitor also enables maternal nutrient transfer. This finding revealed a suspected but untested trait in the evolution of parental care in marsupial frogs, in contrast to previous work on Gastrotheca species that release tadpoles, and suggests greater complexity in reproductive and provisioning modes than previously thought.


Assuntos
Anuros/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Anuros/embriologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Feminino , Insetos , Óvulo
11.
Conserv Biol ; 28(2): 509-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372791

RESUMO

Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress.


Assuntos
Anuros/fisiologia , Quitridiomicetos/fisiologia , Micoses/veterinária , Animais , Biodiversidade , Quitridiomicetos/crescimento & desenvolvimento , Mudança Climática , Conservação dos Recursos Naturais , Micoses/epidemiologia , Micoses/microbiologia , Peru/epidemiologia , Prevalência , Temperatura
12.
Zootaxa ; 3774: 45-56, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24871404

RESUMO

We describe a new lizard of the genus Potamites from elevations of 1000-2100 m in the montane forests of the Cordillera de Paucartambo and the upper Kosñipata valley, Region of Cusco, Peru. The new species differs from other species of Potamites by having scattered keeled scales on dorsum, an undivided frontonasal and absence of femoral pores in females.


Assuntos
Lagartos/anatomia & histologia , Lagartos/classificação , Animais , Ecossistema , Feminino , Masculino , Peru , Árvores
13.
Sci Total Environ ; 916: 170176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244620

RESUMO

Carbon nanoparticles, or carbon dots, can have many beneficial uses. However, we must consider whether they may have any potential negative side effects on wildlife or the ecosystem when these particles end up in wastewater. Early development stages of amphibians are particularly sensitive to contaminants, and exposure to carbon dots could disrupt their development and cause morbidity or death. Past studies have investigated short-term exposure to certain types of nanoparticles, but if these particles get into wastewater exposure may not be short term. Therefore, we tested whether chronic exposure to different concentrations of carbon dots affects the growth, metamorphosis, and telomere length of Cuban tree frog (Osteopilus septentrionalis) tadpoles. We exposed 12 groups of five tadpoles each to different concentrations of carbon dots and a control for three months and tracked survival, growth and metamorphosis. We used carbon nitride dots approximately 2 nm in size at concentrations of 0.01 mg/ml and 0.02 mg/ml, known to interrupt development in zebrafish embryos. After three months, we measured telomere length from tissue samples. We found no difference in tadpole survivorship, growth, development rate, or telomere length among any of the groups, suggesting that carbon dots at these concentrations do not disrupt tadpole development.


Assuntos
Ecossistema , Nitrilas , Águas Residuárias , Animais , Larva , Peixe-Zebra , Metamorfose Biológica , Anuros , Carbono/toxicidade , Telômero
14.
Zootaxa ; 3731: 201-11, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25277563

RESUMO

We describe a new species of Pristimantis from the Río Abiseo National Park in the Andes of northern Peru. Specimens were collected from 2650 to 3000 m elevation. The new species has a snout-vent length of 24.9-34.2 mm (n = 7) in adult females, and 15.3-23.5 mm (n = 29) in adult males. It differs from other species of Pristimantis in having the snout with a broad, slightly upwards curved, fleshy process. The most similar species, P. phoxocephalus has the snout with a vertical fleshy keel, but differs from the new species by being larger (female SVL up to 38.4 mm vs. 34.2 mm), by having prominent dentigerous processes of vomers (minute in the new species), by lacking an inner tarsal fold (present), by lacking heel tubercles (present), and by having the dorsum in life grey, red or brown and the groin with black and orange or yellow mottling, whereas in the new species the dorsum is rusty reddish-brown with lighter blotches or tannish-brown chevrons, and the groin tan with pale brown flecks.


Assuntos
Anuros/anatomia & histologia , Anuros/classificação , Animais , Anuros/fisiologia , Demografia , Feminino , Masculino , Peru , Especificidade da Espécie
15.
Zootaxa ; 5293(2): 333-348, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37518481

RESUMO

The Cordillera de los Andes is one of the most important regions for biodiversity. Among amphibians, many endemic species of terrestrial-breeding frogs have recently been discovered. Herein we describe Phrynopus sancristobali from the Andes of southeastern Peru based on molecular and morphological data. The new species is known from the ecotone between humid puna and montane forest at 3910 m a.s.l. on the left side of the Apurímac Valley in the Department of Ayacucho. The new species differs from congeners by having dorsum bearing pustules and light brown with dark brown reticulations surrounding the areolas, and coloration consisting of flanks golden brown with gray or dark brown marks, palms pale orange, soles deep orange, toes IV and V dark brown in dorsal and ventral view, belly cream to yellow with gray to light brown marks, and groin and throat deep orange. The snout-vent length (SVL) is 20.7 and 22.2 in two females, and 19.5 mm in one male. According to our phylogeny inferred using Maximum Likelihood with a concatenated dataset of three mitochondrial and two nuclear genes, P. sancristobali is sister taxon of P. apumantarum, recently described from Department Huancavelica. Our description extends the known geographic range of Phrynopus 73 km to the south, and P. sancristobali is the only species in the genus known to occur south of the Mantaro River, whose deep valley is hypothesized to be a biogeographic barrier for high-Andean organisms. The discovery of P. sancristobali confirms the high levels of endemism and beta diversity of Phrynopus in the moist puna grasslands and montane forests of the high Andes of Peru, and suggests that further work will reveal the presence of additional species in southern Peru.


Assuntos
Anuros , Florestas , Feminino , Masculino , Animais , Peru , Biodiversidade , Filogenia
16.
Zookeys ; 1187: 1-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161710

RESUMO

Based on morphological and molecular characters, we describe a new species of terrestrial breeding frog of the Pristimantisdanae Group from montane forests of La Mar Province, Ayacucho Department in southern Peru, at elevations from 1200 to 2000 m a.s.l. The phylogenetic analysis, based on concatenated sequences of gene fragments of 16S rRNA, RAG1, COI and TYR suggests that the new species is a sister taxon of a clade that includes one undescribed species of Pristimantis from Cusco, Pristimantispharangobates and Pristimantisrhabdolaemus. The new species is most similar to P.rhabdolaemus, which differs by lacking scapular tubercules and by its smaller size (17.0-18.6 mm in males [n = 5], 20.8-25.2 mm in females [n = 5] in the new species vs. 22.8-26.3 mm in males [n = 19], 26.0-31.9 mm in females [n = 30] of P.rhabdolaemus). Additionally, we report the prevalence of Batrachochytriumdendrobatidis (Bd) in this species.


ResumenDescribimos una nueva especie de rana terrestre de desarrollo directo del grupo Pristimantisdanae de bosques montanos procedentes de la provincia de La Mar, departamento de Ayacucho al sur de Perú con rango de distribución altitudinal entre los 1200­2000 msnm, en base a caracteres morfológicos y moleculares. El análisis filogenético basado en las secuencias concatenadas de los fragmentos de genes ARNr 16S, COI, RAG1 y TYR sugiere que la nueva especie es un taxón hermano del clado que incluye a una especie de Pristimantis no descrita de Cusco, Pristimantispharangobates y Pristimantisrhabdolaemus. La nueva especie se asemeja más a P.rhabdolaemus; de la cual difiere por la ausencia de tubérculos escapulares y su menor tamaño corporal (17.0­18.6 mm en machos [n=5], 20.8­25.2 mm en hembras [n=5] en la nueva especie vs 22.8­26.3 mm en machos [n=19], 26.0­31.9 mm en hembras [n=30] de P.rhabdolaemus). Adicionalmente, reportamos la prevalencia de Batrachochytriumdendrobatidis (Bd) en esta especie de Terrarana.

17.
Ecohealth ; 20(3): 227-230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38104295

RESUMO

Wild geckos are a significant source of human salmonellosis. We swabbed the cloacas of 37 non-native synanthropic geckos (Gekko gecko, n = 16; Phelsuma grandis, n = 21) from southern Florida, USA, and assayed swab DNA extracts using quantitative polymerase chain reaction of the invA gene. Salmonella enterica was detected in both species with a pooled prevalence of 13.5% (5/37; 95% CI 5.3-27.1%), indicating the potential for zoonotic transmission. Implications for human health in the region are discussed.


Assuntos
Lagartos , Infecções por Salmonella , Salmonella enterica , Animais , Florida/epidemiologia , Prevalência , Salmonella enterica/genética , Infecções por Salmonella/epidemiologia
18.
Conserv Biol ; 26(3): 513-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22594596

RESUMO

Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Ranidae/fisiologia , Movimentos da Água , Animais , California , Dinâmica Populacional , Ranidae/crescimento & desenvolvimento , Rios , Estações do Ano , Especificidade da Espécie
19.
Nanoscale ; 14(47): 17607-17624, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412202

RESUMO

The carbon nitride dot (CND) is an emerging carbon-based nanomaterial. It possesses rich surface functional moieties and a carbon nitride core. Spectroscopic data have demonstrated the analogy between CNDs and cytosine/uracil. Recently, it was found that CNDs could interrupt the normal embryogenesis of zebrafish. Modifying CNDs with various nucleobases, especially cytosine, further decreased embryo viability and increased deformities. Physicochemical property characterization demonstrated that adenine- and cytosine-incorporated CNDs are similar but different from guanine-, thymine- and uracil-incorporated CNDs in many properties, morphology, and structure. To investigate the embryogenesis interruption at the cellular level, bare and different nucleobase-incorporated CNDs were applied to normal and cancerous cell lines. A dose-dependent decline was observed in the viability of normal and cancerous cells incubated with cytosine-incorporated CNDs, which matched results from the zebrafish embryogenesis experiment. In addition, nucleobase-incorporated CNDs were observed to enter cell nuclei, demonstrating a possibility of CND-DNA interactions. CNDs modified by complementary nucleobases could bind each other via hydrogen bonds, which suggests nucleobase-incorporated CNDs can potentially bind the complementary nucleobases in a DNA double helix. Nonetheless, neither bare nor nucleobase-incorporated CNDs were observed to intervene in the amplification of the zebrafish polymerase-alpha 1 gene in quantitative polymerase chain reactions. Thus, in conclusion, the embryogenesis interruption by bare and nucleobase-incorporated CNDs might not be a consequence of CND-DNA interactions during DNA replication. Instead, CND-Ca2+ interactions offer a plausible mechanism that hindered cell proliferation and zebrafish embryogenesis originating from disturbed Ca2+ homeostasis by CNDs. Eventually, the hypothesis that raw or nucleobase-incorporated CNDs can be nucleobase analogs proved to be invalid.


Assuntos
Citosina , Peixe-Zebra , Animais , Uracila
20.
Conserv Biol ; 25(2): 382-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21054530

RESUMO

Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.


Assuntos
Anuros/microbiologia , Biodiversidade , Quitridiomicetos/fisiologia , Micoses/veterinária , Animais , Espécies em Perigo de Extinção , Extinção Biológica , Micoses/epidemiologia , Peru , Densidade Demográfica , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA