Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 128(12): 1631-41, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27480112

RESUMO

The mechanisms regulating the sequential steps of terminal erythroid differentiation remain largely undefined, yet are relevant to human anemias that are characterized by ineffective red cell production. Erythroid Krüppel-like Factor (EKLF/KLF1) is a master transcriptional regulator of erythropoiesis that is mutated in a subset of these anemias. Although EKLF's function during early erythropoiesis is well studied, its role during terminal differentiation has been difficult to functionally investigate due to the impaired expression of relevant cell surface markers in Eklf(-/-) erythroid cells. We have circumvented this problem by an innovative use of imaging flow cytometry to investigate the role of EKLF in vivo and have performed functional studies using an ex vivo culture system that enriches for terminally differentiating cells. We precisely define a previously undescribed block during late terminal differentiation at the orthochromatic erythroblast stage for Eklf(-/-) cells that proceed beyond the initial stall at the progenitor stage. These cells efficiently decrease cell size, condense their nucleus, and undergo nuclear polarization; however, they display a near absence of enucleation. These late-stage Eklf(-/-) cells continue to cycle due to low-level expression of p18 and p27, a new direct target of EKLF. Surprisingly, both cell cycle and enucleation deficits are rescued by epistatic reintroduction of either of these 2 EKLF target cell cycle inhibitors. We conclude that the cell cycle as regulated by EKLF during late stages of differentiation is inherently critical for enucleation of erythroid precursors, thereby demonstrating a direct functional relationship between cell cycle exit and nuclear expulsion.


Assuntos
Núcleo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Eritroblastos/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Animais , Sítios de Ligação , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Eritroblastos/citologia , Eritropoese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
PLoS Genet ; 11(10): e1005526, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26452208

RESUMO

Circulating red blood cells (RBCs) are essential for tissue oxygenation and homeostasis. Defective terminal erythropoiesis contributes to decreased generation of RBCs in many disorders. Specifically, ineffective nuclear expulsion (enucleation) during terminal maturation is an obstacle to therapeutic RBC production in vitro. To obtain mechanistic insights into terminal erythropoiesis we focused on FOXO3, a transcription factor implicated in erythroid disorders. Using an integrated computational and experimental systems biology approach, we show that FOXO3 is essential for the correct temporal gene expression during terminal erythropoiesis. We demonstrate that the FOXO3-dependent genetic network has critical physiological functions at key steps of terminal erythropoiesis including enucleation and mitochondrial clearance processes. FOXO3 loss deregulated transcription of genes implicated in cell polarity, nucleosome assembly and DNA packaging-related processes and compromised erythroid enucleation. Using high-resolution confocal microscopy and imaging flow cytometry we show that cell polarization is impaired leading to multilobulated Foxo3-/- erythroblasts defective in nuclear expulsion. Ectopic FOXO3 expression rescued Foxo3-/- erythroblast enucleation-related gene transcription, enucleation defects and terminal maturation. Remarkably, FOXO3 ectopic expression increased wild type erythroblast maturation and enucleation suggesting that enhancing FOXO3 activity may improve RBCs production. Altogether these studies uncover FOXO3 as a novel regulator of erythroblast enucleation and terminal maturation suggesting FOXO3 modulation might be therapeutic in disorders with defective erythroid maturation.


Assuntos
Eritrócitos/metabolismo , Eritropoese/genética , Fatores de Transcrição Forkhead/genética , Biologia de Sistemas , Animais , Autofagia/genética , Células da Medula Óssea/metabolismo , Polaridade Celular/genética , Eritroblastos/metabolismo , Eritrócitos/citologia , Citometria de Fluxo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Homeostase , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo
3.
Blood Adv ; 3(1): 72-82, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622145

RESUMO

Platelets are essential for hemostasis; however, several studies have identified age-dependent differences in platelet function. To better understand the origins of fetal platelet function, we have evaluated the contribution of the fetal-specific RNA binding protein Lin28b in the megakaryocyte/platelet lineage. Because activated fetal platelets have very low levels of P-selectin, we hypothesized that the expression of platelet P-selectin is part of a fetal-specific hematopoietic program conferred by Lin28b. Using the mouse as a model, we find that activated fetal platelets have low levels of P-selectin and do not readily associate with granulocytes in vitro and in vivo, relative to adult controls. Transcriptional analysis revealed high levels of Lin28b and Hmga2 in fetal, but not adult, megakaryocytes. Overexpression of LIN28B in adult mice significantly reduces the expression of P-selectin in platelets, and therefore identifies Lin28b as a negative regulator of P-selectin expression. Transplantation of fetal hematopoietic progenitors resulted in the production of platelets with low levels of P-selectin, suggesting that the developmental regulation of P-selectin is intrinsic and independent of differences between fetal and adult microenvironments. Last, we observe that the upregulation of P-selectin expression occurs postnatally, and the temporal kinetics of this upregulation are recapitulated by transplantation of fetal hematopoietic stem and progenitor cells into adult recipients. Taken together, these studies identify Lin28b as a new intrinsic regulator of fetal platelet function.


Assuntos
Plaquetas/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/genética , Fatores Etários , Animais , Biomarcadores , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Selectina-P/genética , Selectina-P/metabolismo , Ativação Plaquetária , Agregação Plaquetária/genética , Testes de Função Plaquetária , Proteínas de Ligação a RNA/metabolismo
4.
Cell Rep ; 11(12): 1892-904, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095363

RESUMO

Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC)-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias , Hematopoese , Células-Tronco Hematopoéticas , Animais , Células Sanguíneas/citologia , Linhagem da Célula , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Saco Vitelino/citologia , Saco Vitelino/crescimento & desenvolvimento
5.
PLoS One ; 9(1): e85729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489668

RESUMO

Acinetobacter baumannii is an emerging bacterial pathogen of considerable medical concern. The organism's transmission and ability to cause disease has been associated with its propensity to colonize and form biofilms on abiotic surfaces in health care settings. To better understand the genetic determinants that affect biomaterial attachment, we performed a transposon mutagenesis analysis of abiotic surface-colonization using A. baumannii strain 98-37-09. Disruption of an RNase T2 family gene was found to limit the organism's ability to colonize polystyrene, polypropylene, glass, and stainless steel surfaces. DNA microarray analyses revealed that in comparison to wild type and complemented cells, the RNase T2 family mutant exhibited reduced expression of 29 genes, 15 of which are predicted to be associated with bacterial attachment and surface-associated motility. Motility assays confirmed that RNase T2 mutant displays a severe motility defect. Taken together, our results indicate that the RNase T2 family protein identified in this study is a positive regulator of A. baumannii's ability to colonize inanimate surfaces and motility. Moreover, the enzyme may be an effective target for the intervention of biomaterial colonization, and consequently limit the organism's transmission within the hospital setting.


Assuntos
Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/fisiologia , Endorribonucleases/metabolismo , Acinetobacter baumannii/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Materiais Biocompatíveis , Endorribonucleases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Poliestirenos/química
6.
Vaccine ; 30(36): 5382-8, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22728222

RESUMO

We examined the humoral immune response to the unglycosylated central region of the respiratory syncytial virus (RSV) attachment (G) protein in mice following intranasal challenge at day 0 (primary) and day 21 (secondary) with subtype A (A2 strain) or B (B1 strain) RSV preparations. Our serological screening reagents included bacterially derived glutathione S-transferase (GST) fusion proteins, each bearing a portion of the RSV G central core (CC; residues 151-190), proximal central core (PCC; residues 151-172), and the distal central core (DCC; residues 173-190) and purified RSV G proteins from subtype A and B viruses. Convalescent sera collected on day 21 following primary RSV infection bore robust IgG response primarily against the homosubtypic RSV G DCC with relatively modest antigen affinity/avidity as demonstrated by brief incubation with 6M urea. In contrast, sera collected on day 42 following secondary homosubtypic RSV infection bore IgG titers of higher magnitudes and antigen affinity/avidity against the homosubtypic RSV G CC, PCC, and/or the DCC regions and full-length RSV G protein but not against the heterosubtypic RSV G protein or recombinant CC subdomains. In contrast, heterosubtypic secondary RSV infection elicits a broad array of IgG responses with titers of varying magnitudes to homo- and heterosubtypic RSV G CC regions as well as to purified F, Ga, and Gb proteins with the notable exception of minimal response to the RSV G DCC domain associated with the secondary RSV challenge. Our results have implications for RSV G-based serological assays as well as prophylactic immunotherapy and RSV vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Feminino , Humanos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas do Envelope Viral/química , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA