Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7380-7385, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693701

RESUMO

Ion mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization. MobiLipid utilizes a newly established DTCCSN2 library for uniformly (U)13C-labeled lipids, derived from a U13C-labeled yeast extract, containing 377 DTCCSN2 values. This automated open-source R Markdown tool enables internal monitoring and straightforward compensation for CCSN2 biases. It supports lipid class- and adduct-specific CCS corrections, requiring only three U13C-labeled lipids per lipid class-adduct combination across 10 lipid classes without requiring additional external measurements. The applicability of MobiLipid is demonstrated for trapped IM (TIM)-MS measurements of an unlabeled yeast extract spiked with U13C-labeled lipids. Monitoring the CCSN2 biases of TIMCCSN2 values compared to DTCCSN2 library entries utilizing MobiLipid resulted in mean absolute biases of 0.78% and 0.33% in positive and negative ionization mode, respectively. By applying the CCS correction integrated into the tool for the exemplary data set, the mean absolute CCSN2 biases of 10 lipid classes could be reduced to approximately 0%.


Assuntos
Lipidômica , Lipídeos , Espectrometria de Massas , Lipidômica/métodos , Lipídeos/química , Lipídeos/análise , Espectrometria de Mobilidade Iônica/métodos , Controle de Qualidade , Padrões de Referência , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
2.
Anal Chem ; 96(6): 2666-2675, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297457

RESUMO

Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.


Assuntos
Aminoácidos , Isoleucina , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Leucina , Espectrometria de Massa com Cromatografia Líquida , Treonina , Íons
3.
Anal Bioanal Chem ; 415(21): 5151-5163, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37347300

RESUMO

Climate change directs the focus in biotechnology increasingly on one-carbon metabolism for fixation of CO2 and CO2-derived chemicals (e.g. methanol, formate) to reduce our reliance on both fossil and food-competing carbon sources. The tetrahydrofolate pathway is involved in several one-carbon fixation pathways. To study such pathways, stable isotope-labelled tracer analysis performed with mass spectrometry is state of the art. However, no such method is currently available for tetrahydrofolate vitamers. In the present work, we established a fit-for-purpose extraction method for the methylotrophic yeast Komagataella phaffii that allows access to intracellular methyl- and methenyl-tetrahydrofolate (THF) with demonstrated stability over several hours. To determine isotopologue distributions of methyl-THF, LC-QTOFMS provides a selective fragment ion with suitable intensity of at least two isotopologues in all samples, but not for methenyl-THF. However, the addition of ion mobility separation provided a critical selectivity improvement allowing accurate isotopologue distribution analysis of methenyl-THF with LC-IM-TOFMS. Application of these new methods for 13C-tracer experiments revealed a decrease from 83 ± 4 to 64 ± 5% in the M + 0 carbon isotopologue fraction in methyl-THF after 1 h of labelling with formate, and to 54 ± 5% with methanol. The M + 0 carbon isotopologue fraction of methenyl-THF was reduced from 83 ± 2 to 78 ± 1% over the same time when using 13C-methanol labelling. The labelling results of multiple strains evidenced the involvement of the THF pathway in the oxygen-tolerant reductive glycine pathway, the presence of the in vivo reduction of formate to formaldehyde, and the activity of the spontaneous condensation reaction of formaldehyde with THF in K. phaffii.


Assuntos
Dióxido de Carbono , Metanol , Carbono/metabolismo , Tetra-Hidrofolatos/metabolismo , Espectrometria de Massas , Formiatos
4.
Phys Chem Chem Phys ; 25(30): 20749-20758, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490344

RESUMO

Aminobenzoic acids are well-established candidates for understanding the formation of isomeric ions in positive mode electrospray ionization as they yield both N- and O-protomers (prototropic isomers) at the amine and carbonyl sites, respectively. In the present work, a combination of ion mobility-mass spectrometry and density functional theory calculations to determine the protonation and deprotonation behaviour of four diamino benzoic acid and four aminophthalic acid isomers is presented. The additional COOH group on the ring of aminophthalic acids provides experimental evidence regarding the mechanism of intramolecular NH3+ → O proton transfer, which has been the subject of debate in recent years. To determine the proton acceptor O atom, ion mobility spectra of the fragments of protomers were used as a new method for the confidential assignment of the O-protomer structure, confirming only short-distance intramolecular NH3+ → O proton transfer. Additionally, the substitution pattern both influences the basicity of the protonation sites and enables these molecules to form internal hydrogen bonds with the protonated or deprotonated sites. The formation of the hydrogen bonds in the deprotonated aminophthalic acids changed the charge distribution and subsequently their ion mobility-derived collision cross sections in nitrogen (CCSN2) leading to separation of the four isomers studied. Finally, an interesting effect of the substitution pattern was observed as a synergistic electron-donating effect of the amine groups of 3,5-diaminobenzoic acid on enhancing the basicity of the carbon atom C2 of the ring and previously unreported formation of a C-protomer within aminobenzoic acid systems.

5.
Anal Bioanal Chem ; 414(25): 7483-7493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35960317

RESUMO

The major benefits of integrating ion mobility (IM) into LC-MS methods for small molecules are the additional separation dimension and especially the use of IM-derived collision cross sections (CCS) as an additional ion-specific identification parameter. Several large CCS databases are now available, but outliers in experimental interplatform IM-MS comparisons are identified as a critical issue for routine use of CCS databases for identity confirmation. We postulate that different routine external calibration strategies applied for traveling wave (TWIM-MS) in comparison to drift tube (DTIM-MS) and trapped ion mobility (TIM-MS) instruments is a critical factor affecting interplatform comparability. In this study, different external calibration approaches for IM-MS were experimentally evaluated for 87 steroids, for which TWCCSN2, DTCCSN2 and TIMCCSN2 are available. New reference CCSN2 values for commercially available and class-specific calibrant sets were established using DTIM-MS and the benefit of using consolidated reference values on comparability of CCSN2 values assessed. Furthermore, use of a new internal correction strategy based on stable isotope labelled (SIL) internal standards was shown to have potential for reducing systematic error in routine methods. After reducing bias for CCSN2 between different platforms using new reference values (95% of TWCCSN2 values fell within 1.29% of DTCCSN2 and 1.12% of TIMCCSN2 values, respectively), remaining outliers could be confidently classified and further studied using DFT calculations and CCSN2 predictions. Despite large uncertainties for in silico CCSN2 predictions, discrepancies in observed CCSN2 values across different IM-MS platforms as well as non-uniform arrival time distributions could be partly rationalized.


Assuntos
Calibragem , Cromatografia Líquida , Espectrometria de Massas/métodos , Padrões de Referência
6.
Plant Mol Biol ; 105(4-5): 435-447, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33296063

RESUMO

KEY MESSAGE: LC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.) was the aim of the study. Metabolic fingerprints of self-compatible and self-incompatible apricot pistils were created using liquid chromatography coupled to time-of-flight mass spectrometry followed by untargeted compound search. Multivariate statistical analysis revealed 15 significant differential compounds among the total of 4006 and 1005 aligned metabolites in positive and negative ion modes, respectively. Total explained variance of 89.55% in principal component analysis (PCA) indicated high quality of differential expression analysis. The statistical analysis showed significant differences between genotypes and pollination time as well, which demonstrated high performance of the metabolic fingerprinting and revealed the presence of metabolites with significant influence on the self-incompatibility reactions. Finally, polyketide-based macrolides similar to peloruside A and a hydroxy sphingosine derivative are suggested to be significant differential metabolites in the experiment. These results indicate a strategy of pollen tubes to protect microtubules and avoid growth arrest involved in sexual incompatibility reactions of apricot.


Assuntos
Flores/genética , Metabolômica/métodos , Polinização/genética , Prunus armeniaca/genética , Autoincompatibilidade em Angiospermas/genética , Cromatografia Líquida/métodos , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genótipo , Espectrometria de Massas/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Prunus armeniaca/metabolismo
7.
Electrophoresis ; 42(4): 473-481, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188545

RESUMO

Rugged analytical methods for the screening and identity confirmation of anthocyanins require a dedicated sample preparation, chromatographic setup, and the reliable generation of multiple identification points to confirm identity against the wide range of phenolic compounds typically present in food, beverage, and plant material samples. To this end, combinations of spectroscopic and mass spectrometric detection are frequently employed for this application to provide higher confidence in the absence of authentic standards. In the present work, low-field drift tube ion mobility (DTIM) separation is evaluated for this task using a LC-DAD-DTIM-QTOFMS method. DTIM-MS allows accurate determination of collision cross sections (DT CCS) for all analysed compounds as well as a precise alignment tool for reconciling fragment and precursor ions in data independent acquisition mode. The presented approach thereby allows for an anthocyanin screening method taking true advantage of all dimensions of the analytical platform: relative retention (RPLC), UV/VIS absorption spectrum, accurate mass, DT CCSN2 , and confirmed high-resolution fragment ions. From the analysis of authentic standards and several berry samples primarily from the Vaccinium genus, Level 1 confirmation data for six anthocyanins from the cyanidin family, and Level 2 confirmation for a further 29 anthocyanins confirmed in berry samples is provided. The method and accompanying dataset provided as part of this work provides a means to develop anthocyanin screening methods using the ion mobility dimension as an additional alignment and filtering parameter in data independent analysis acquisition across any LC-IM-MS platform.


Assuntos
Antocianinas/análise , Frutas/química , Vaccinium/química , Cromatografia Líquida , Espectrometria de Massas/métodos , Ribes/química , Rubus/química
8.
J Sep Sci ; 44(14): 2798-2813, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33945207

RESUMO

In a previous work, we explored zone broadening and the achievable plate numbers in linear drift tube ion mobility-mass spectrometry through developing a plate-height model [1]. On the basis of these findings, the present theoretical study extends the model by exploring peak-to-peak resolution and peak capacity in ion mobility separations. The first part provides a critical overview of chromatography-influenced resolution equations, including refinement of existing formulae. Furthermore, we present exact resolution equations for drift tube ion mobility spectrometry based on first principles. Upon implementing simple modifications, these exact formulae could be readily extended to traveling wave ion mobility separations and to cases when ion mobility spectrometry is coupled to mass spectrometry. The second part focuses on peak capacity. The well-known assumptions of constant plate number and constant peak width form the basis of existing approximate solutions. To overcome their limitations, an exact peak capacity equation is derived for drift tube ion mobility spectrometry. This exact solution is rooted in a suitable physical model of peak broadening, accounting for the finite injection pulse and subsequent diffusional spreading. By borrowing concepts from the theoretical toolbox of chromatography, we believe that the present study will help in integrating ion mobility spectrometry into the unified language of separation science.

9.
Metab Eng ; 61: 288-300, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619503

RESUMO

BACKGROUND: Cell line-specific, genome-scale metabolic models enable rigorous and systematic in silico investigation of cellular metabolism. Such models have recently become available for Chinese hamster ovary (CHO) cells. However, a key ingredient, namely an experimentally validated biomass function that summarizes the cellular composition, was so far missing. Here, we close this gap by providing extensive experimental data on the biomass composition of 13 parental and producer CHO cell lines under various conditions. RESULTS: We report total protein, lipid, DNA, RNA and carbohydrate content, cell dry mass, and detailed protein and lipid composition. Furthermore, we present meticulous data on exchange rates between cells and environment and provide detailed experimental protocols on how to determine all of the above. The biomass composition is converted into cell line- and condition-specific biomass functions for use in cell line-specific, genome-scale metabolic models of CHO. Finally, flux balance analysis (FBA) is used to demonstrate consistency between in silico predictions and experimental analysis. CONCLUSIONS: Our study reveals a strong variability of the total protein content and cell dry mass across cell lines. However, the relative amino acid composition is independent of the cell line and condition and thus needs not be explicitly measured for each new cell line. In contrast, the lipid composition is strongly influenced by the growth media and thus will have to be determined in each case. These cell line-specific variations in biomass composition have a small impact on growth rate predictions with FBA, as inaccuracies in the predictions are rather dominated by inaccuracies in the exchange rate spectra. Cell-specific biomass variations only become important if the experimental errors in the exchange rate spectra drop below twenty percent.


Assuntos
Biomassa , Simulação por Computador , Modelos Biológicos , Animais , Células CHO , Cricetulus , Meios de Cultura/análise , Meios de Cultura/química
10.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707468

RESUMO

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

11.
Analyst ; 145(19): 6313-6333, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32716422

RESUMO

In the past decade, ion mobility spectrometry (IMS) in combination with mass spectrometry (IM-MS) became a widely employed technique for the separation and structural characterization of ionic species in the gas phase. Similarly to chromatography, where studies on the mechanism of band broadening and adequate plate-height equations have been aiding method development and promoting advancements in column technology, a suitable resolving power theory of drift tube ion mobility-mass spectrometry (DTIM-MS) is essential to stimulate further progress in this emerging field of separation science. In the present study, therefore, we explore dispersion processes in detail and present a plate-height model of ion mobility-mass spectrometry. We quantify the effects of five major dispersion processes that contribute to zone broadening and determine the resolving power in DTIM-MS: diffusion, Coulomb repulsion, electric field inhomogeneities, the finite initial spread of the ion cloud and dispersion outside the mobility cell. A solution is provided to account for the nonuniform separation field in IM-MS in the presence of multiple compartments. The equations - derived from first principles - serve as the basis for formulating an expression that is similar in nature to van Deemter's plate-height equation for chromatography. A comprehensive set of experiments was performed on a custom-built DTIM-MS instrument to evaluate the accuracy of the plate-height model, resulting in satisfactory agreement between experiment and theory. Building on these findings, the plate-height equation was employed to explore the influence of drift gas pressure, injection pulse-width and the mobility of ions on resolving power from a theoretical point of view. Our findings may aid instrument design and development in the future, as well as the optimization of measurement conditions to improve ion mobility separations. By employing the plate-height concept and the general formalism of differential migration processes to describe zone spreading in IM-MS, we aim to find a common ground between this emerging method and such well-established techniques as HPLC or CZE. We also hope that the work presented here will facilitate a broader acceptance of IMS as a separation method of great potential by the communities of chromatography and electrophoresis, as well as that of mass spectrometry.

12.
Rapid Commun Mass Spectrom ; 33 Suppl 2: 66-74, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30801790

RESUMO

RATIONALE: The wide chemical diversity and complex matrices inherent to metabolomics still pose a challenge to current analytical approaches for metabolite screening. Although dedicated front-end separation techniques combined with high-resolution mass spectrometry set the benchmark from an analytical point of view, the increasing number of samples and sample complexity demand for a compromise in terms of selectivity, sensitivity and high-throughput analyses. METHODS: Prior to low-field drift tube ion mobility (IM) separation and quadrupole time-of-flight mass spectrometry (QTOFMS) detection, rapid ultrahigh-performance liquid chromatography separation was used for analysis of different concentration levels of dansylated metabolites present in a yeast cell extract. For identity confirmation of metabolites at the MS2 level, an alternating frame approach was chosen and two different strategies were tested: a data-independent all-ions acquisition and a quadrupole broad band isolation (Q-BBI) directed by IM drift separation. RESULTS: For Q-BBI analysis, the broad mass range isolation was successfully optimized in accordance with the distinctive drift time to m/z correlation of the dansyl derivatives. To guarantee comprehensive sampling, a broad mass isolation window of 70 Da was employed. Fragmentation was performed via collision-induced dissociation, applying a collision energy ramp optimized for the dansyl derivatives. Both approaches were studied in terms of linear dynamic range and repeatability employing ethanolic extracts of Pichia pastoris spiked with 1 µM metabolite mixture. Example data obtained for histidine and glycine showed that drift time precision (<0.01 to 0.3% RSD, n = 5) compared very well with the data reported in an earlier IM-TOFMS-based study. CONCLUSIONS: Chimeric mass spectra, inherent to data-independent analysis approaches, are reduced when using a drift time directed Q-BBI approach. Additionally, an improved linear dynamic working range was observed, representing, together with a rapid front-end separation, a powerful approach for metabolite screening.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Metaboloma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Anal Bioanal Chem ; 411(24): 6265-6274, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302708

RESUMO

This study of ion accumulation/release behavior relevant to ion mobility-mass spectrometry (IM-MS) as employed for non-targeted metabolomics involves insight from theoretical studies, and controlled reference experiments involving measurement of low and high molecular mass metabolites in varying concentrations within a complex matrix (yeast extracts). Instrumental settings influencing ion trapping (accumulation time) and release conditions in standard and multiplexed operation have been examined, and translation of these insights to liquid chromatography (LC) in combination with drift tube IM-MS measurements has been made. The focus of the application is non-targeted metabolomics using carefully selected samples to allow quantitative interpretations to be made. Experimental investigation of the IM-MS ion utilization efficiency particularly focusing on the use of the Hadamard transform multiplexing with 4-bit pseudo-random pulsing sequence for assessment of low and high molecular mass metabolites is compared with theoretical modeling of gas-phase behavior of small and large molecules in the IM trapping funnel. Increasing the trapping time for small metabolites with standard IM-MS operation is demonstrated to have a deleterious effect on maintaining a quantitative representation of the metabolite abundance. The application of these insights to real-world non-targeted metabolomics assessment of intracellular extracts from biotechnologically relevant production processes is presented, and the results were compared to LC×IM-MS measurements of the same samples. Spiking of a uniformly 13C-labeled yeast extract (as a standard matrix) with varying amounts of natural metabolites is used to assess the linearity and sensitivity according to the instrument mode of operation (i.e., LC-MS, LC×IM-MS, and LC×[multiplexed]IM-MS). When comparing metabolite quantification using standard and multiplexed operation, sensitivity gain factors of 2-8 were obtained for metabolites with m/z below 250. Taken together, the simulation and experimental results of this study provide insight for optimizing measurement conditions for metabolomics and highlight the need for implementation of multiplexing strategies using short trapping times as relative quantification (e.g., in the context with non-targeted differential analysis) with sufficient sensitivity and working range is a requirement in this field of application.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metabolômica , Aminoácidos/metabolismo , Íons , Padrões de Referência
14.
J Sep Sci ; 41(1): 20-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29024509

RESUMO

Ion mobility spectrometry is an analytical technique known for more than 100 years, which entails separating ions in the gas phase based on their size, shape, and charge. While ion mobility spectrometry alone can be useful for some applications (mostly security analysis for detecting certain classes of narcotics and explosives), it becomes even more powerful in combination with mass spectrometry and high-performance liquid chromatography. Indeed, the limited resolving power of ion mobility spectrometry alone can be tackled when combining this analytical strategy with mass spectrometry or liquid chromatography with mass spectrometry. Over the last few years, the hyphenation of ion mobility spectrometry to mass spectrometry or liquid chromatography with mass spectrometry has attracted more and more interest, with significant progresses in both technical advances and pioneering applications. This review describes the theoretical background, available technologies, and future capabilities of these techniques. It also highlights a wide range of applications, from small molecules (natural products, metabolites, glycans, lipids) to large biomolecules (proteins, protein complexes, biopharmaceuticals, oligonucleotides).


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Produtos Biológicos/análise , Glucuronídeos/análise , Humanos , Íons , Ligantes , Lipídeos/análise , Oligonucleotídeos/análise , Peptídeos/análise , Polissacarídeos/análise , Ligação Proteica , Proteínas/análise , Reprodutibilidade dos Testes , Software , Temperatura
15.
Anal Chem ; 89(17): 9048-9055, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28763190

RESUMO

Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on a commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Laboratórios/normas , Espectrometria de Massas/métodos , Calibragem , Lipídeos/química , Estrutura Molecular , Nitrogênio/química , Proteínas/química , Reprodutibilidade dos Testes
16.
Electrophoresis ; 38(18): 2287-2295, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28691762

RESUMO

Reversed-phase LC combined with high-resolution mass spectrometry (HRMS) is one of the most popular methods for cellular metabolomics studies. Due to the difficulties in analyzing a wide range of polarities encountered in the metabolome, 100%-wettable reversed-phase materials are frequently used to maximize metabolome coverage within a single analysis. Packed with silica-based sub-3 µm diameter particles, these columns allow high separation efficiency and offer a reasonable compromise for metabolome coverage within a single analysis. While direct performance comparison can be made using classical chromatographic characterization approaches, a comprehensive assessment of the column's performance for cellular metabolomics requires use of a full LC-HRMS workflow in order to reflect realistic study conditions used for cellular metabolomics. In this study, a comparison of several reversed-phase LC columns for metabolome analysis using such a dedicated workflow is presented. All columns were tested under the same analytical conditions on an LC-TOF-MS platform using a variety of authentic metabolite standards and biotechnologically relevant yeast cell extracts. Data on total workflow performance including retention behavior, peak capacity, coverage, and molecular feature extraction repeatability from these columns are presented with consideration for both nontargeted screening and differential metabolomics workflows using authentic standards and Pichia pastoris cell extract samples.


Assuntos
Cromatografia de Fase Reversa/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma , Pichia/metabolismo , Reprodutibilidade dos Testes
17.
FEMS Yeast Res ; 17(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505300

RESUMO

Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism.


Assuntos
Glutationa/metabolismo , Homeostase , Fitoquelatinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
19.
Electrophoresis ; 37(7-8): 1063-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26814136

RESUMO

Iron is an essential micronutrient for all marine organisms, but it is also a growth limiting factor as the iron concentrations in the open ocean are below 1 nmol/L in sea water iron is almost entirely bound to organic ligands of the dissolved organic matter fraction, which are mostly of unknown structure. The input from rivers was traditionally considered as less important due to estuarine sedimentation processes of the mainly colloidal iron particles. However, recent studies have shown that this removal is not complete and riverine input may represent an important iron source in the open ocean. In this context, iron transport by land-derived natural organic matter (NOM), and dissolved organic matter (DOM) have been identified as carrier mechanisms for riverine iron. The aim of this work is to characterize complexes containing iron and other metals in waters simulating estuarine conditions in order to help understand which role iron-DOM compounds play in the open ocean. A method based on size-exclusion chromatography (SEC) with sequential UV/VIS and ICP-MS detection was developed for investigation of DOM size distribution and for assessment of the size-dependent metal distribution in NOM-rich surface water. Furthermore, sample matrix experiments were also performed revealing a dependence of DOM size distribution upon seawater concentration and different compounds present in seawater. Finally, efforts toward determination of DOM size with standardization with typical SEC standards indicate that only relative comparisons are possible with this approach, and that the sample matrix composition strongly influences obtained results.


Assuntos
Cromatografia em Gel/métodos , Substâncias Húmicas/análise , Ferro/química , Espectrometria de Massas/métodos , Água do Mar/química , Carbonatos/química , Ferro/análise , Poliestirenos/química
20.
Electrophoresis ; 36(2): 348-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25308871

RESUMO

The combination of CE and MS is now a widely used tool that can provide a combination of high resolution separations with detailed structural information. Recently, we highlighted the benefits of an approach to add further functionality to this well-established hyphenated technique, namely the possibility to perform chemical reactions within the sheath-liquid of the CE-MS interface . Apart from using hydrogen/deuterium exchange for online determination of numbers of exchangeable protons, the addition of DPPH• (2,2-diphenyl-1-picrylhydrazyl) to the sheath-liquid can be used as a fast screening tool for studying antioxidant characteristics of individual components. Such a CE-MS methodology allows rapid and information-rich analysis with minimal reagent and sample consumption to be performed. In the present work, we demonstrate the applicability of this approach for the characterization of phenolic plant extracts from the Labiatae family, namely Rosmarinus officinalis and Melissa officinalis. Using the described approach, a wide range of compounds (15 and 13 phenolic compounds, respectively) could be confidently identified using a combination of high resolution CE-MS separations with implementation of online deuterium exchange and DPPH• reactions. These compounds included polyphenols, phenolic acids, and triterpene acids. In conjunction with online MS/MS experiments, extensive structural information for aglyconic and glycosylated antioxidants present in the extracts could be obtained using simple experimental changes, which can be carried out prior to the purchasing of expensive chemical standards or the time-consuming preparative isolation of individual compounds.


Assuntos
Eletroforese Capilar/métodos , Fenóis/análise , Extratos Vegetais/análise , Espectrometria de Massas em Tandem/métodos , Antioxidantes/análise , Compostos de Bifenilo/química , Medição da Troca de Deutério , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Melissa/química , Picratos/química , Extratos Vegetais/química , Rosmarinus/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA