Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Microbiol ; 21(1): 72-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246324

RESUMO

RubisCO, the CO2 fixing enzyme of the Calvin-Benson-Bassham (CBB) cycle, is responsible for the majority of carbon fixation on Earth. RubisCO fixes 12 CO2 faster than 13 CO2 resulting in 13 C-depleted biomass, enabling the use of δ13 C values to trace CBB activity in contemporary and ancient environments. Enzymatic fractionation is expressed as an ε value, and is routinely used in modelling, for example, the global carbon cycle and climate change, and for interpreting trophic interactions. Although values for spinach RubisCO (ε = ~29‰) have routinely been used in such efforts, there are five different forms of RubisCO utilized by diverse photolithoautotrophs and chemolithoautotrophs and ε values, now known for four forms (IA, B, D and II), vary substantially with ε = 11‰ to 27‰. Given the importance of ε values in δ13 C evaluation, we measured enzymatic fractionation of the fifth form, form IC RubisCO, which is found widely in aquatic and terrestrial environments. Values were determined for two model organisms, the 'Proteobacteria' Ralstonia eutropha (ε = 19.0‰) and Rhodobacter sphaeroides (ε = 22.4‰). It is apparent from these measurements that all RubisCO forms measured to date discriminate less than commonly assumed based on spinach, and that enzyme ε values must be considered when interpreting and modelling variability of δ13 C values in nature.


Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Rhodobacter sphaeroides/enzimologia , Ribulose-Bifosfato Carboxilase/química , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Isótopos de Carbono/química , Cupriavidus necator/química , Cupriavidus necator/isolamento & purificação , Ecossistema , Fotossíntese , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/isolamento & purificação , Ribulose-Bifosfato Carboxilase/metabolismo , Microbiologia do Solo , Microbiologia da Água
2.
Mol Biol Evol ; 34(11): 2747-2761, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106592

RESUMO

Even the simplest microbial-eukaryotic mutualisms are comprised of entire populations of symbionts at the level of the host individual. Early work suggested that these intrahost populations maintain low genetic diversity as a result of transmission bottlenecks or to avoid competition between symbiont genotypes. However, the amount of genetic diversity among symbionts within a single host remains largely unexplored. To address this, we investigated the chemosynthetic symbiosis between the bivalve Solemya velum and its intracellular bacterial symbionts, which exhibits evidence of both vertical and horizontal transmission. Intrahost symbiont populations were sequenced to high coverage (200-1,000×). Analyses of nucleotide diversity revealed that the symbiont genome sequences were largely homogeneous within individual host specimens, consistent with vertical transmission, except for particular regions that were polymorphic in ∼20% of host specimens. These variant sites were also found segregating in other host individuals from the same population, colocalized to several regions of the genome, and consistently co-occurred on the same short read pairs (derived from the same chromosome). These results strongly suggest that these variant haplotypes originated through recombination events, potentially during prior mixed infections or in the external environment, rather than as novel mutations within symbiont populations. This abundant genetic diversity could have a profound influence on symbiont evolution as it provides the opportunity for selection to limit the extent of reductive genome evolution commonly seen in obligate intracellular bacteria and to enable the evolution of adaptive genotypes.


Assuntos
Bactérias/genética , Bivalves/genética , Simbiose/genética , Alelos , Animais , Sequência de Bases , Evolução Molecular , Variação Genética/genética , Genoma Bacteriano , Haplótipos/genética , Filogenia , Recombinação Genética/genética
3.
J Eukaryot Microbiol ; 65(5): 661-668, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29443446

RESUMO

Diverse species of Legionella and Legionella-like amoebal pathogens (LLAPs) have been identified as intracellular bacteria in many amoeboid protists. There are, however, other amoeboid groups such as testate amoeba for which we know little about their potential to host such bacteria. In this study, we assessed the occurrence and diversity of Legionella spp. in cultures and environmental isolates of freshwater arcellinid testate amoebae species, Arcella hemispherica, Arcella intermedia, and Arcella vulgaris, via 16S rRNA gene sequence analyses and fluorescent in situ hybridization (FISH). Analysis of the 16S rRNA gene sequences indicated that A. hemispherica, A. intermedia, and A. vulgaris host Legionella-like bacteria with 94-98% identity to other Legionella spp. based on NCBI BLAST search. Phylogenetic analysis placed Legionella-like Arcella-associated bacteria (LLAB) in three different clusters within a tree containing all other members of Legionella and LLAPs. The intracellular localization of the Legionella within Arcella hosts was confirmed using FISH with a Legionella-specific probe. This study demonstrates that the host range of Legionella and Legionella-like bacteria in the Amoebozoa extends beyond members of "naked" amoebae species, with members of the testate amoebae potentially serving an ecological role in the dispersal, protection, and replication of Legionella spp. in natural environments.


Assuntos
Bactérias/isolamento & purificação , Lobosea/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Água Doce/microbiologia , Água Doce/parasitologia , Legionella/classificação , Legionella/genética , Legionella/isolamento & purificação , Lobosea/classificação , Filogenia , RNA Ribossômico 16S/genética
4.
BMC Genomics ; 15: 924, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25342549

RESUMO

BACKGROUND: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. RESULTS: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. CONCLUSIONS: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.


Assuntos
Bivalves/microbiologia , Ecossistema , Genoma Bacteriano , Espaço Intracelular/microbiologia , Simbiose , Animais , Composição de Bases/genética , Elementos de DNA Transponíveis/genética , Genes Bacterianos , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Oxirredução , RNA de Transferência/genética
5.
Environ Microbiol ; 16(12): 3608-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24428587

RESUMO

Many invertebrates at deep-sea hydrothermal vents depend upon bacterial symbionts for nutrition, and thus the mechanism of symbiont transmission, vertical (via the egg or sperm) or horizontal (from environment or contemporary hosts) is critically important. Under a strict maternal transmission model, symbiont and host mitochondrial genomes pass through the same individuals leading to congruent host-symbiont phylogenies. In contrast, horizontally transmitted symbionts are environmentally acquired, leading to incongruent host-symbiont phylogenies. Each of these transmission strategies is predicted to have different consequences for symbiont ecology and genome evolution. Deep-sea mussels (Bathymodiolinae) are globally distributed at deep-sea hydrothermal vents, depend upon chemoautotrophic symbionts for their survival, and are hypothesized to transmit their symbionts horizontally. This study explored bathymodioline symbiont ecology through quantification of symbionts at two hydrothermal vent sites and symbiont evolution using functional gene phylogenies. These phylogenies revealed a dramatically more complex evolutionary history than 16S ribosomal RNA phylogenies, suggesting that horizontal gene transfer may have played an important role in symbiont gene evolution. Tests of the strict maternal transmission hypothesis found that host-symbiont lineages were significantly decoupled across multiple genes. These findings expand our understanding of symbiont ecology and evolution, and provide the strongest evidence yet for horizontal transmission of bathymodioline symbionts.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Fontes Hidrotermais , Mytilidae/microbiologia , Simbiose/genética , Animais , Fenômenos Fisiológicos Bacterianos , Biofilmes , Meio Ambiente , Evolução Molecular , Genes de RNAr , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
6.
Mol Ecol ; 23(6): 1544-1557, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24237389

RESUMO

Chemoautotrophic symbionts of deep sea hydrothermal vent tubeworms are known to provide their hosts with all their primary nutrition. While studies have examined how chemoautotrophic symbionts provide the association with nitrogen, fewer have examined if symbiont nitrogen metabolism varies as a function of environmental conditions. Ridgeia piscesae tubeworms flourish at Northeastern Pacific vents, occupy a range of microhabitats, and exhibit a high degree of morphological plasticity [e.g. long-skinny (LS) and short-fat (SF) phenotypes] that may relate to environmental conditions. This plasticity affords an opportunity to examine whether symbiont nitrogen metabolism varies among host phenotypes. LS and SF R. piscesae were recovered from the Axial and Main Endeavour Field hydrothermal vents. Nitrate and ammonium were quantified in Ridgeia blood, and the expression of key nitrogen metabolism genes, as well as stable nitrogen isotope ratios, was quantified in host branchial plume and symbiont-containing tissues. Nitrate and ammonium were abundant in the blood of both phenotypes though environmental ammonium concentrations were, paradoxically, lowest among individuals with the highest blood ammonium. Assimilatory nitrate reductase transcripts were always below detection, though in both LS and SF R. piscesae symbionts, we observed elevated expression of dissimilatory nitrate reductase genes, as well as symbiont and host ammonium assimilation genes. Site-specific differences in expression, along with tissue stable isotope analyses, suggest that LS and SF Ridgeia symbionts are engaged in both dissimilatory nitrate reduction and ammonia assimilation to varying degrees. As such, it appears that environmental conditions -not host phenotype-primarily dictates symbiont nitrogen metabolism.


Assuntos
Bactérias/metabolismo , Fontes Hidrotermais , Nitrogênio/metabolismo , Poliquetos/metabolismo , Poliquetos/microbiologia , Simbiose , Compostos de Amônio/sangue , Animais , Bactérias/genética , Crescimento Quimioautotrófico , Nitrato Redutase/genética , Nitratos/sangue , Isótopos de Nitrogênio/análise , Fenótipo , Poliquetos/genética
7.
mBio ; 13(6): e0241422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214570

RESUMO

Two major viewpoints have been put forward for how microbial populations change, differing in whether adaptation is driven principally by gene-centric or genome-centric processes. Longitudinal sampling at microbially relevant timescales, i.e., days to weeks, is critical for distinguishing these mechanisms. Because of its significance for both microbial ecology and human health and its accessibility and high level of curation, we used the oral microbiota to study bacterial intrapopulation genome dynamics. Metagenomes were generated by shotgun sequencing of total community DNA from the healthy tongues of 17 volunteers at four to seven time points obtained over intervals of days to weeks. We obtained 390 high-quality metagenome-assembled genomes (MAGs) defining population genomes from 55 genera. The vast majority of genes in each MAG were tightly linked over the 2-week sampling window, indicating that the majority of the population's genomes were temporally stable at the MAG level. MAG-defined populations were composed of up to 5 strains, as determined by single-nucleotide-variant frequencies. Although most were stable over time, individual strains carrying over 100 distinct genes that rose from low abundance to dominance in a population over a period of days were detected. These results indicate a genome-wide as opposed to a gene-level process of population change. We infer that genome-wide selection of ecotypes is the dominant mode of adaptation in the oral populations over short timescales. IMPORTANCE The oral microbiome represents a microbial community of critical relevance to human health. Recent studies have documented the diversity and dynamics of different bacteria to reveal a rich, stable ecosystem characterized by strain-level dynamics. However, bacterial populations and their genomes are neither monolithic nor static; their genomes are constantly evolving to lose, gain, or alter their functional potential. To better understand how microbial genomes change in complex communities, we used culture-independent approaches to reconstruct the genomes (MAGs) for bacterial populations that approximated different species, in 17 healthy donors' mouths over a 2-week window. Our results underscored the importance of strain-level dynamics, which agrees with and expands on the conclusions of previous research. Altogether, these observations reveal patterns of genomic dynamics among strains of oral bacteria occurring over a matter of days.


Assuntos
Microbiota , Humanos , Microbiota/genética , Bactérias/genética , Metagenoma , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Metagenômica/métodos
8.
Eur J Protistol ; 82: 125861, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051873

RESUMO

Research on protist-bacteria interactions is increasingly relevant as these associations are now known to play important roles in ecosystem and human health. Free-living amoebae are abundant in all environments and are frequent hosts for bacterial endosymbionts including pathogenic bacteria. However, to date, only a small fraction of these symbionts have been identified, while the structure and composition of the total symbiotic bacterial communities still remains largely unknown. Here, we use the testate amoeba Arcella spp. as model organisms to investigate the specificity and diversity of Arcella-associated microbial communities. High-throughputamplicon sequencing from the V4 region of the 16S rRNA gene revealed high diversity in the bacterial communities associated with the wild Arcella spp. To investigate the specificity of the associated bacterial community with greater precision, we investigated the bacterial communities of two lab-cultured Arcella species, A. hemispherica and A. intermedia, grown in two different media types. Our results suggest that Arcella-bacteria associations are species-specific, and that the associated bacterial community of lab-cultured Arcella spp. remains distinct from that of the surrounding media. Further, each host Arcella species could be distinguished based on its bacterial composition. Our findings provide insight into the understanding of eukaryotic-bacterial symbiosis.


Assuntos
Amebozoários , Microbiota , Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Simbiose , Tubulinos
9.
Extremophiles ; 15(1): 105-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21153671

RESUMO

The candidate archaeal division Korarchaeota is known primarily from deeply branching sequences of 16S rRNA genes PCR-amplified from hydrothermal springs. Parallels between the phylogeny of these genes and the geographic locations where they were identified suggested that Korarchaeota exhibit a high level of endemism. In this study, the influence of geographic isolation and select environmental factors on the diversification of the Korarchaeota was investigated. Fourteen hot springs from three different regions of Kamchatka, Russia were screened by PCR using Korarchaeota-specific and general Archaea 16S rRNA gene-targeting primers, cloning, and sequencing. Phylogenetic analyses of these sequences with Korarchaeota 16S rRNA sequences previously identified from around the world suggested that all Kamchatka sequences cluster together in a unique clade that subdivides by region within the peninsula. Consistent with endemism, 16S rRNA gene group-specific quantitative PCR of all Kamchatka samples detected only the single clade of Korarchaeota that was found by the non-quantitative PCR screening. In addition, their genes were measured in only low numbers; small Korarchaeota populations would present fewer chances for dispersal to and colonization of other sites. Across the entire division of Korarchaeota, common geographic locations, temperatures, or salinities of identification sites united sequence clusters at different phylogenetic levels, suggesting varied roles of these factors in the diversification of Korarchaeota.


Assuntos
Fontes Termais/microbiologia , Korarchaeota/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia da Água , Sibéria
10.
ISME J ; 15(8): 2183-2194, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33846565

RESUMO

The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth's atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.


Assuntos
Carbono , Ecossistema , Atmosfera , Isótopos de Carbono/análise , Planeta Terra , Geologia
11.
Mol Biol Evol ; 26(6): 1391-404, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19289597

RESUMO

Homologous recombination is a fundamental mechanism for the genetic diversification of free-living bacteria. However, recombination may be limited in endosymbiotic bacteria, as these taxa are locked into an intracellular niche and may rarely encounter sources of foreign DNA. This study tested the hypothesis that vertically transmitted endosymbionts of deep-sea clams (Bivalvia: Vesicomyidae) show little or no evidence of recombination. Phylogenetic analysis of 13 loci distributed across the genomes of 14 vesicomyid symbionts revealed multiple, well-supported inconsistencies among gene tree topologies, and maximum likelihood-based tests rejected a hypothesis of shared evolutionary history (linkage) among loci. Further, multiple statistical methods confirmed the presence of recombination by detecting intragenic breakpoints in two symbiont loci. Recombination may be confined to a subset of vesicomyid symbionts, as some clades showed high levels of genomic stability, whereas others showed clear patterns of homologous exchange. Notably, a mosaic genome is present in symB, a symbiont lineage shown to have been acquired laterally (i.e., nonvertically) by Vesicomya sp. JdF clams. The majority of loci analyzed here supported a tight sister clustering of symB with the symbiont of a host species from the Mid-Atlantic Ridge, whereas others placed symB in a clade with symA, the dominant phylotype of V. sp. JdF clams. This result raises the hypothesis that lateral symbiont transfer between hosts may facilitate recombination by bringing divergent symbiont lineages into contact. Together, the data show that homologous recombination contributes to the diversification of vesicomyid clam symbionts, despite the intracellular lifestyle of these bacteria.


Assuntos
Bactérias/genética , Bivalves/microbiologia , Recombinação Genética , Simbiose , Algoritmos , Animais , Fenômenos Fisiológicos Bacterianos , Composição de Bases , Sequência de Bases , Teorema de Bayes , Interpretação Estatística de Dados , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
12.
ISME J ; 14(12): 3054-3067, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839546

RESUMO

Host range is a fundamental component of symbiotic interactions, yet it remains poorly characterized for the prevalent yet enigmatic subcategory of bacteria/bacteria symbioses. The recently characterized obligate bacterial epibiont Candidatus Nanosynbacter lyticus TM7x with its bacterial host Actinomyces odontolyticus XH001 offers an ideal system to study such a novel relationship. In this study, the host range of TM7x was investigated by coculturing TM7x with various related Actinomyces strains and characterizing their growth dynamics from initial infection through subsequent co-passages. Of the twenty-seven tested Actinomyces, thirteen strains, including XH001, could host TM7x, and further classified into "permissive" and "nonpermissive" based on their varying initial responses to TM7x. Ten permissive strains exhibited growth/crash/recovery phases following TM7x infection, with crash timing and extent dependent on initial TM7x dosage. Meanwhile, three nonpermissive strains hosted TM7x without a growth-crash phase despite high TM7x dosage. The physical association of TM7x with all hosts, including nonpermissive strains, was confirmed by microscopy. Comparative genomic analyses revealed distinguishing genomic features between permissive and nonpermissive hosts. Our results expand the concept of host range beyond a binary to a wider spectrum, and the varying susceptibility of Actinomyces strains to TM7x underscores how small genetic differences between hosts can underly divergent selective trajectories.


Assuntos
Especificidade de Hospedeiro , Simbiose , Actinomyces/genética , Bactérias
13.
Genome Biol ; 21(1): 293, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33323129

RESUMO

BACKGROUND: The increasing availability of microbial genomes and environmental shotgun metagenomes provides unprecedented access to the genomic differences within related bacteria. The human oral microbiome with its diverse habitats and abundant, relatively well-characterized microbial inhabitants presents an opportunity to investigate bacterial population structures at an ecosystem scale. RESULTS: Here, we employ a metapangenomic approach that combines public genomes with Human Microbiome Project (HMP) metagenomes to study the diversity of microbial residents of three oral habitats: tongue dorsum, buccal mucosa, and supragingival plaque. For two exemplar taxa, Haemophilus parainfluenzae and the genus Rothia, metapangenomes reveal distinct genomic groups based on shared genome content. H. parainfluenzae genomes separate into three distinct subgroups with differential abundance between oral habitats. Functional enrichment analyses identify an operon encoding oxaloacetate decarboxylase as diagnostic for the tongue-abundant subgroup. For the genus Rothia, grouping by shared genome content recapitulates species-level taxonomy and habitat preferences. However, while most R. mucilaginosa are restricted to the tongue as expected, two genomes represent a cryptic population of R. mucilaginosa in many buccal mucosa samples. For both H. parainfluenzae and the genus Rothia, we identify not only limitations in the ability of cultivated organisms to represent populations in their native environment, but also specifically which cultivar gene sequences are absent or ubiquitous. CONCLUSIONS: Our findings provide insights into population structure and biogeography in the mouth and form specific hypotheses about habitat adaptation. These results illustrate the power of combining metagenomes and pangenomes to investigate the ecology and evolution of bacteria across analytical scales.


Assuntos
Bactérias/genética , Metagenoma , Microbiota/genética , Boca/microbiologia , Mapeamento Cromossômico , Haemophilus parainfluenzae/genética , Humanos , Micrococcaceae/genética , RNA Ribossômico 16S/genética
14.
Mol Biol Evol ; 25(4): 673-87, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18192696

RESUMO

Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decoupling symbiont and mitochondrial phylogenies. Here, we provide the first evidence against strict maternal cotransmission of symbiont and mitochondrial genomes in vesicomyids. Analysis of Vesicomya sp. mt-II clams from hydrothermal vents on the Juan de Fuca Ridge (northeastern Pacific) revealed a symbiont phylotype (designated symB(VII)) highly divergent from previously described symbionts of the same host lineage. SymB(VII)-hosting clams occurred at low frequency (0.02) relative to individuals hosting the dominant symbiont phylotype. Phylogenetic analysis of 16S rRNA genes from a wide range of symbionts and free-living bacteria clustered symB(VII) within the monophyletic clade of vesicomyid symbionts. Further analysis of 3 symbiont loci (23S, dnaK, and soxA) across 11 vesicomyid taxa unambiguously placed symB(VII) as sister to the symbiont of a distantly related host lineage, Vesicomya sp. from the Mid-Atlantic Ridge (98.9% median nucleotide identity across protein-coding loci). Using likelihood and Bayesian model discrimination methods, we rejected the strict maternal cotransmission hypothesis by showing a significant decoupling of symbiont and host mitochondrial (COI and mt16S genes) phylogenies. Indeed, decoupling occurred even when symB(VII) was excluded from phylogenetic reconstructions, suggesting a history of host switching in this group. Together, the data indicate a history of lateral symbiont transfer in vesicomyids, with symB(VII) being the most conspicuous example. Interpreted alongside previous studies of the vesicomyid symbiosis, these results suggest a mixed mode of symbiont transmission characterized by predominantly vertical transmission punctuated with instances of lateral symbiont acquisition. Lateral acquisition may facilitate the exchange of genetic material (recombination) among divergent symbiont lineages, rendering the evolutionary history of vesicomyid symbiont genomes much more complex than previously thought.


Assuntos
Bactérias , Bivalves/genética , Bivalves/microbiologia , Simbiose/genética , Animais , Teorema de Bayes , Funções Verossimilhança , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
15.
Environ Microbiol ; 11(8): 2136-47, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19397674

RESUMO

Bacteria-eukaryote endosymbioses are perhaps the most pervasive co-evolutionary associations in nature. Here, intracellular chemosynthetic symbionts of deep-sea clams (Vesicomyidae) were analysed by amplicon pyrosequencing to explore how symbiont transmission mode affects the genetic diversity of the within-host symbiont population. Vesicomyid symbionts (Gammaproteobacteria) are presumed to be obligately intracellular, to undergo nearly strict vertical transmission between host generations, and to be clonal within a host. However, recent data show that vesicomyid symbionts can be acquired laterally via horizontal transfer between hosts or uptake from the environment, potentially creating opportunities for multiple symbiont strains to occupy the same host. Here, genotype-specific PCR and direct sequencing of the bacterial internal transcribed spacer initially demonstrated the co-occurrence of two symbiont strains, symA and symB (93.5% nt identity), in 8 of 118 Vesicomya sp. clams from 3 of 7 hydrothermal vent sites on the Juan de Fuca Ridge. To confirm multiple strains within individual clams, amplicon pyrosequencing of two symbiont loci was used to obtain deep-coverage measurements (mean: approximately 1500x coverage per locus per clam) of symbiont population structure. Pyrosequencing confirmed symA-symB co-occurrence for two individuals, showing the presence of both genotypes in amplicon pools. However, in the majority of clams, the endosymbiont population was remarkably homogenous, with > 99.5% of sequences collapsing into a single symbiont genotype in each clam. These results support the hypothesis that a predominantly vertical transmission strategy leads to the fixation of a single symbiont strain in most hosts. However, mixed symbiont populations do occur in vesicomyids, potentially facilitating the exchange of genetic material between divergent symbiont lineages.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Análise de Sequência de DNA/métodos , Simbiose/genética , Animais , Sequência de Bases , Gammaproteobacteria/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
16.
Appl Environ Microbiol ; 75(18): 6005-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19633116

RESUMO

Population-level genetic diversity in the obligate symbiosis between the bivalve Solemya velum and its thioautotrophic bacterial endosymbiont was examined. Distinct populations along the New England coast shared a single mitochondrial genotype but were fixed for unique symbiont genotypes, indicating high levels of symbiont genetic structuring and potential symbiont-host decoupling.


Assuntos
Bactérias/classificação , Bactérias/genética , Bivalves/classificação , Bivalves/genética , Variação Genética , Simbiose , Animais , Bactérias/isolamento & purificação , Bivalves/microbiologia , Bivalves/fisiologia , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , New England , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 75(1): 203-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18997031

RESUMO

To control the antibiotic resistance epidemic, it is necessary to understand the distribution of genetic material encoding antibiotic resistance in the environment and how anthropogenic inputs, such as wastewater, affect this distribution. Approximately two-thirds of antibiotics administered to humans are beta-lactams, for which the predominant bacterial resistance mechanism is hydrolysis by beta-lactamases. Of the beta-lactamases, the TEM family is of overriding significance with regard to diversity, prevalence, and distribution. This paper describes the design of DNA probes universal for all known TEM beta-lactamase genes and the application of a quantitative PCR assay (also known as Taqman) to quantify these genes in environmental samples. The primer set was used to study whether sewage, both treated and untreated, contributes to the spread of these genes in receiving waters. It was found that while modern sewage treatment technologies reduce the concentrations of these antibiotic resistance genes, the ratio of bla(TEM) genes to 16S rRNA genes increases with treatment, suggesting that bacteria harboring bla(TEM) are more likely to survive the treatment process. Thus, beta-lactamase genes are being introduced into the environment in significantly higher concentrations than occur naturally, creating reservoirs of increased resistance potential.


Assuntos
Esgotos/microbiologia , Resistência beta-Lactâmica , beta-Lactamases/genética , Sequência de Bases , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Purificação da Água
18.
PLoS One ; 14(12): e0226432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834908

RESUMO

Darwin's finch species in the Galapagos Archipelago are an iconic adaptive radiation that offer a natural experiment to test for the various factors that influence gut microbiome composition. The island of Floreana has the longest history of human settlement within the archipelago and offers an opportunity to compare island and habitat effects on Darwin's finch microbiomes. In this study, we compare gut microbiomes in Darwin's finch species on Floreana Island to test for effects of host phylogeny, habitat (lowlands, highlands), and island (Floreana, Santa Cruz). We used 16S rRNA Illumina sequencing of fecal samples to assess the gut microbiome composition of Darwin's finches, complemented by analyses of stable isotope values and foraging data to provide ecological context to the patterns observed. Overall bacterial composition of the gut microbiome demonstrated co-phylogeny with Floreana hosts, recapitulated the effect of habitat and diet, and showed differences across islands. The finch phylogeny uniquely explained more variation in the microbiome than did foraging data. Finally, there were interaction effects for island × habitat, whereby the same Darwin's finch species sampled on two islands differed in microbiome for highland samples (highland finches also had different diets across islands) but not lowland samples (lowland finches across islands had comparable diet). Together, these results corroborate the influence of phylogeny, age, diet, and sampling location on microbiome composition and emphasize the necessity for comprehensive sampling given the multiple factors that influence the gut microbiome in Darwin's finches, and by extension, in animals broadly.


Assuntos
Bactérias/classificação , Ecossistema , Tentilhões/microbiologia , Microbioma Gastrointestinal , Filogenia , Animais , Bactérias/genética , Fezes/microbiologia , Tentilhões/genética , Humanos , Ilhas , RNA Ribossômico 16S
19.
Sci Rep ; 9(1): 18781, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827126

RESUMO

Darwin's finches are an iconic example of an adaptive radiation with well-characterized evolutionary history, dietary preferences, and biogeography, offering an unparalleled opportunity to disentangle effects of evolutionary history on host microbiome from other factors like diet and habitat. Here, we characterize the gut microbiome in Darwin's finches, comparing nine species that occupy diverse ecological niches on Santa Cruz island. The finch phylogeny showed moderate congruence with the microbiome, which was comprised mostly of the bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria. Diet, as measured with stable isotope values and foraging observations, also correlated with microbiome differentiation. Additionally, each gut microbial community could easily be classified by the habitat of origin independent of host species. Altogether, these findings are consistent with a model of microbiome assembly in which environmental filtering via diet and habitat are primary determinants of the bacterial taxa present with lesser influence from the evolutionary history between finch species.


Assuntos
Tentilhões/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Evolução Biológica , Dieta , Equador , Tentilhões/fisiologia , Filogeografia , Especificidade da Espécie
20.
PLoS One ; 14(7): e0220347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335887

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0217804.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA