RESUMO
Inclusion of a detergent in protein biotherapeutic purification processes is a simple and very robust method for inactivating enveloped viruses. The detergent Triton X-100 has been used for many years and is part of the production process of several commercial therapeutic proteins. However, recent ecological studies have suggested that Triton X-100 and its break-down products can potentially behave as endocrine disrupters in aquatic organisms, raising concerns from an environmental impact perspective. As such, discharge of Triton X-100 into the waste water treatment plants is regulated in some jurisdictions, and alternative detergents for viral inactivation are required. In this work, we report on the identification and evaluation of more eco-friendly detergents as viable replacements for Triton X-100. Five detergent candidates with low to moderate environmental impact were initially identified and evaluated with respect to protein stability, followed by proof-of-concept virus inactivation studies using a model enveloped virus. From the set of candidates lauryldimethylamine N-oxide (LDAO) was identified as the most promising detergent due to its low ecotoxicity, robust anti-viral activity (LRV >4 at validation set-point conditions with X-MuLX), and absence of any negative impact on protein function. This detergent exhibited effective and robust virus inactivation in a broad range of protein concentrations, solution conductivities, pHs, and in several different cell culture fluid matrices. The only process parameter which correlated with reduced virus inactivation potency was LDAO concentration, and then only when the concentration was reduced to below the detergent's critical micelle concentration (CMC). Additionally, this work also demonstrated that LDAO was cleared to below detectable levels after Protein A affinity chromatography, making it suitable for use in a platform process that utilizes this chromatographic mode for protein capture. All these findings suggest that LDAO may be a practical alternative to Triton X-100 for use in protein therapeutic production processes for inactivating enveloped viruses. Biotechnol. Bioeng. 2017;114: 813-820. © 2016 Wiley Periodicals, Inc.
Assuntos
Detergentes/química , Detergentes/farmacologia , Dimetilaminas/química , Dimetilaminas/farmacologia , Inativação de Vírus/efeitos dos fármacos , Química Verde , Herpesvirus Suídeo 1/efeitos dos fármacos , Vírus da Leucemia Murina/efeitos dos fármacos , Modelos Moleculares , Octoxinol/química , Octoxinol/farmacologiaRESUMO
Advances in molecular biology and cell culture technology have led to monoclonal antibody titers in excess of 10 g/L. Such an increase can pose concern to traditional antibody purification processes due to limitations in column hardware and binding capacity of Protein A resins. Recent development of high capacity cation exchangers can make cation exchange chromatography (CEX) a promising and economic alternative to Protein A capture. This work investigates the feasibility of using CEX for direct capture of monoclonal antibodies from high titer cell culture fluids. Two resin candidates were selected from seven newer generation cation exchangers for their higher binding capacity and selectivity. Two monoclonal antibodies with widely differing pI values were used to evaluate the capability of CEX as a platform capture step. Screening of loading pH and conductivity showed both resins to be capable of directly capturing both antibodies from undiluted cell culture fluid. At appropriate acidic pH range, product loading of over 65 g/L resin was achieved for both antibodies. A systematic design of experiment (DOE) approach was used to optimize the elution conditions for the CEX step. Elution pH showed the most significant impact on clearance of host cell proteins (HCPs). Under optimal conditions, HCP reduction factors in the range of 9-44 were achieved on the CEX step based on the pI of the antibody. Apart from comparing CEX directly to Protein A as the capture method, material from either modality was also processed through the subsequent polishing steps to compare product quality at the drug substance level. Process performance and product quality was found to be acceptable using the non-affinity based process scheme. The results shown here present a cheaper and higher capacity generic capture method for high-titer antibody processes.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Biotecnologia/métodos , Técnicas de Cultura de Células , Cromatografia por Troca Iônica/economia , Custos e Análise de Custo , Tecnologia Farmacêutica/métodosRESUMO
Ceramic hydroxyapatite (CHT) chromatography offers unique selectivity for protein purification. However, columns composed of CHT, a crystalline form of calcium phosphate, often suffer from short column lifetimes, particularly under acidic operating conditions. In this paper, CHT was used under slightly acidic conditions (pH 6) for the production scale purification of a recombinant protein. Under these conditions, the packing quality of production scale CHT columns (45 cm diameter) degraded after 5-10 cycles of operation. This was not reproduced using a conventional scale-down chromatography model, in which a constant column bed height was maintained across scales. Thus, an alternative scale-down model was developed to better predict the lifetime of large scale CHT columns. The alternative approach, which utilized a constant column diameter-to-height aspect ratio, was able to predict column failure that approximated that of the manufacturing scale column. The alternative scale-down approach was then used to test alternate buffer formulations that significantly improved the CHT column lifetime. Screening studies, which assessed the effects of mobile phase pH and composition on the dissolution (weight loss) of CHT, were used to identify the alternative mobile phase formulations. Results from the study showed that slight changes to the existing mobile phase compositions significantly increased the column lifetime, from approximately 10 cycles to approximately 65 cycles of use, without altering the purification of the recombinant protein. The alternative scale-down model, together with relatively rapid mobile phase screening studies, provides a practical approach for predicting and optimizing the useful lifetime of CHT columns for large scale applications.
Assuntos
Cromatografia/métodos , Durapatita , Proteínas/isolamento & purificação , CerâmicaRESUMO
A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.
Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Modelos Teóricos , Pressão AtmosféricaRESUMO
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Proteína Estafilocócica A/química , Inativação de Vírus/efeitos dos fármacos , Sulfato de Amônio/química , Sulfato de Amônio/farmacologia , Anticorpos Monoclonais/metabolismo , Arginina/química , Arginina/farmacologia , Cromatografia de Afinidade/métodos , Detergentes/química , Detergentes/farmacologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fc das Imunoglobulinas/metabolismo , Modelos Moleculares , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Proteína Estafilocócica A/metabolismo , Vírus/efeitos dos fármacosRESUMO
Advances in cell culture expression levels in the last two decades have resulted in monoclonal antibody titers of ≥10 g/L to be purified downstream. A high capacity capture step is crucial to prevent purification from being the bottleneck in the manufacturing process. Despite its high cost and other disadvantages, Protein A chromatography still remains the optimal choice for antibody capture due to the excellent selectivity provided by this step. A dual flow loading strategy was used in conjunction with a new generation high capacity Protein A resin to maximize binding capacity without significantly increasing processing time. Optimum conditions were established using a simple empirical Design of Experiment (DOE) based model and verified with a wide panel of antibodies. Dynamic binding capacities of >65 g/L could be achieved under these new conditions, significantly higher by more than one and half times the values that have been typically achieved with Protein A in the past. Furthermore, comparable process performance and product quality was demonstrated for the Protein A step at the increased loading.
Assuntos
Anticorpos Monoclonais/metabolismo , Cromatografia de Afinidade/métodos , Ligação Proteica , Proteína Estafilocócica A/metabolismo , Algoritmos , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Projetos de Pesquisa , Proteína Estafilocócica A/químicaRESUMO
Hydrophobic interaction chromatography (HIC) is commonly used as a polishing step in monoclonal antibody purification processes. HIC offers an orthogonal selectivity to ion exchange chromatography and can be an effective step for aggregate clearance and host cell protein reduction. HIC, however, suffers from the limitation of use of high concentrations of kosmotropic salts to achieve the desired separation. These salts often pose a disposal concern in manufacturing facilities and at times can cause precipitation of the product. Here, we report an unconventional way of operating HIC in the flowthrough (FT) mode with no kosmotropic salt in the mobile phase. A very hydrophobic resin is selected as the stationary phase and the pH of the mobile phase is modulated to achieve the required selectivity. Under the pH conditions tested (pH 6.0 and below), antibodies typically become positively charged, which has an effect on its polarity and overall surface hydrophobicity. Optimum pH conditions were chosen under which the antibody product of interest flowed through while impurities such as aggregates and host cell proteins bound to the column. This strategy was tested with a panel of antibodies with varying pI and surface hydrophobicity. Performance was comparable to that observed using conventional HIC conditions with high salt.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cromatografia/métodos , Interações Hidrofóbicas e Hidrofílicas , Sais/química , Sulfato de Amônio/química , Citratos/química , Concentração de Íons de Hidrogênio , Peso Molecular , Fosfatos/química , Compostos de Potássio/química , Reprodutibilidade dos Testes , Citrato de SódioRESUMO
Micro-scale chromatography formats are becoming more routinely used in purification process development because of their ability to rapidly screen large number of process conditions at a time with minimal material. Given the usual constraints that exist on development timelines and resources, these systems can provide a means to maximize process knowledge and process robustness compared to traditional packed column formats. In this work, a high-throughput, 96-well filter plate format was used in the development of the cation exchange and hydrophobic interaction chromatography steps of a purification process designed to alter the glycoform distribution of a small protein. The significant input parameters affecting process performance were rapidly identified for both steps and preliminary operating conditions were identified. These ranges were verified in a packed chromatography column in order to assess the ability of the 96-well plate to predict packed column performance. In both steps, the 96-well plate format consistently led to underestimated glycoform-enrichment levels and to overestimated product recovery rates compared to the column-based approach. These studies demonstrate that the plate format can be used as a screening tool to narrow the operating ranges prior to further optimization on packed chromatography columns.