Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2208707119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445968

RESUMO

Pathogenic variants in the Retinitis pigmentosa GTPase regulator (RPGR) gene lead to a clinically severe form of X-linked retinal dystrophy. However, it remains unclear why some variants cause a predominant rod, while others result in a cone-dominated phenotype. Post-translational glutamylation of the photoreceptor-specific RPGRORF15 isoform by the TTLL5 enzyme is essential for its optimal function in photoreceptors, and loss of TTLL5 leads to retinal dystrophy with a cone phenotype. Here we show that RPGR retinal disease, studied in a single cohort of 116 male patients, leads to a clear progressive shift from rod- to cone-dominating phenotype as the RPGRORF15 variant location approaches the distal part of the Open Reading Frame 15 (ORF15) region. The rod photoreceptor involvement on the contrary diminishes along the RGPR sequence, and the variants associated with the cone only phenotype are located predominantly in the very distal part, including the C-terminal basic domain. Moreover, these distal truncating RPGRORF15 variants disrupt the interaction with TTLL5 and lead to a significant impairment of RPGR glutamylation. Thus, consistent with the phenotype of TTLL5 pathogenic variants, our study shows that RPGRORF15 variants, which disrupt its basic domain and the interaction with TTLL5, also impair RPGR glutamylation and lead to the cone phenotype. This has implications for ongoing gene therapy clinical trials where the application of RPGR with impaired glutamylation may be less effective in treating RGPR dystrophies and may even convert a rod-cone dystrophy into a cone dystrophy phenotype.


Assuntos
Distrofias de Cones e Bastonetes , Distrofias Retinianas , Humanos , Masculino , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Fenótipo , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Ácido Glutâmico/metabolismo
2.
Expert Opin Emerg Drugs ; 27(4): 431-443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562395

RESUMO

INTRODUCTION: Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED: This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION: The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Humanos , Códon , Proteínas do Olho/genética , Terapia Genética/métodos , Mutação , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
3.
Ophthalmologica ; 244(4): 281-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32209785

RESUMO

INTRODUCTION: Introduction of retinal gene therapy requires established outcome measures along with thorough understanding of the pathophysiology. Evidence of early, thinned outer segments in RPGR X-linked retinitis pigmentosa could help understand how the level of cone photoreceptor involvement translates to visual potential. OBJECTIVE: Analysis of foveal photoreceptor outer segment length in a young cohort of RPGR patients to help clarify the reason for absent maximal visual acuity seen. METHODS: Case-control study of RPGR patients. Quantitative measurement of photoreceptor outer segment by OCT. RESULTS: Eighteen male RPGR patients and 30 normal subjects were included. Outer segment thickness differed significantly between the RPGR and normal eyes (p < 0.0005). Mean outer segment values were 35.6 ± 2.3 µm and 35.4 ± 2.6 µm for RPGR right and left eyes, respectively. In normal eyes, the mean outer segment thickness was 61.4 ± 0.7 µm for right eyes and 62.4 ± 0.7 µm for left eyes. CONCLUSIONS: Patients with RPGR X-linked retinitis pigmentosa show thinning of the foveal photoreceptor outer segment thickness early in the disease course, which could be an explanation for the lower maximum visual acuity seen. These findings must be taken into consideration when assessing efficacy outcome measures in retinal gene therapy trials.


Assuntos
Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Estudos de Casos e Controles , Proteínas do Olho/genética , Humanos , Masculino , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Tomografia de Coerência Óptica , Acuidade Visual
4.
Mol Vis ; 23: 334-345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659709

RESUMO

PURPOSE: Retinal dystrophy through outer photoreceptor cell death affects 1 in 2,500 people worldwide with severe impairment of vision in advanced stages of the disease. Optogenetic strategies to restore visual function to animal models of retinal degeneration by introducing photopigments to neurons spared degeneration in the inner retina have been explored, with variable degrees of success. It has recently been shown that the non-steroidal anti-inflammatory and non-selective gap-junction blocker meclofenamic acid (MFA) can enhance the visual responses produced by an optogenetic actuator (channelrhodopsin) expressed in retinal ganglion cells (RGCs) in the degenerate retina. Here, we set out to determine whether MFA could also enhance photoreception by another optogenetic strategy in which ectopic human rod opsin is expressed in ON bipolar cells. METHODS: We used in vitro multielectrode array (MEA) recordings to characterize the light responses of RGCs in the rd1 mouse model of advanced retinal degeneration following intravitreal injection of an adenoassociated virus (AAV2) driving the expression of human rod opsin under a minimal grm6 promoter active in ON bipolar cells. RESULTS: We found treated retinas were light responsive over five decades of irradiance (from 1011 to 1015 photons/cm2/s) with individual RGCs covering up to four decades. Application of MFA reduced the spontaneous firing rate of the visually responsive neurons under light- and dark-adapted conditions. The change in the firing rate produced by the 2 s light pulses was increased across all intensities following MFA treatment, and there was a concomitant increase in the signal to noise ratio for the visual response. Restored light responses were abolished by agents inhibiting glutamatergic or gamma-aminobutyric acid (GABA)ergic signaling in the MFA-treated preparation. CONCLUSIONS: These results confirm the potential of MFA to inhibit spontaneous activity and enhance the signal to noise ratio of visual responses in optogenetic therapies to restore sight.


Assuntos
Ácido Meclofenâmico/farmacologia , Opsinas de Bastonetes/metabolismo , Razão Sinal-Ruído , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Adaptação Ocular/efeitos dos fármacos , Animais , Humanos , Camundongos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
6.
Eye (Lond) ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965320

RESUMO

The use of robotic surgery in ophthalmology has been shown to offer many potential advantages to current surgical techniques. Vitreoretinal surgery requires complex manoeuvres and high precision, and this is an area that exceeds manual human dexterity in certain surgical situations. With the advent of advanced therapeutics such as subretinal gene therapy, precise delivery and minimising trauma is imperative to optimize outcomes. There are multiple robotic systems in place for ophthalmology in pre-clinical and clinical use, and the Preceyes Robotic Surgical System (Preceyes BV) has also gained the CE mark and is commercially available for use. Recent in-vivo and in-human surgeries have been performed successfully with robotics systems. This includes membrane peeling, subretinal injections of therapeutics, and retinal vein cannulation. There is huge potential to integrate robotic surgery into mainstream clinical practice. In this review, we summarize the existing systems, and clinical implementation so far, and highlight the future clinical applications for robotic surgery in vitreo-retina.

7.
Transl Vis Sci Technol ; 13(9): 18, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39287586

RESUMO

Purpose: Clinical trials for X-linked retinitis pigmentosa (RP) often assess retinal structure using optical coherence tomography (OCT) and function using microperimetry to evaluate initial eligibility and endpoints. Therefore, we seek to determine which parameters might be most sensitive in screening new patients for enrollment. Methods: Thirty-one patients (62 eyes) with confirmed retinitis pigmentosa GTPase regulator (RPGR) mutations attending Oxford Eye Hospital were included in this retrospective analysis. Outer retinal structure was investigated by measuring the remaining ellipsoid zone (EZ) and external limiting membrane (ELM) on OCT. Visual function was evaluated by using 10-2 microperimetry mean sensitivity. Results: The median age of patients with RPGR was 31 years (interquartile range [IQR] = 22-39 years). For the right and left eyes, respectively, the median EZ length through the foveal section was 921 µm (IQR = 607-1570) and 865 µm (IQR = 508-1442) and median ELM length was 2056 µm (IQR = 1336-2764) and 1860 µm (IQR = 1152-2680). Similarly, the median microperimetry sensitivity (MS) was 2.0 decibel (dB; IQR = 0.4-5.4) and 1.1 dB (IQR = 0.1-5.4). Linear mixed model regression analysis showed that EZ was significantly positively correlated to ELM (P < 0.001, R² = 0.931). EZ and ELM were significantly correlated with the microperimetry sensitivity with exponential relationship (P < 0.001, R² = 0.71 and 0.72, respectively). Using the exponential equation of regression line, EZ below approximately 600 µm (RE = 637 µm, 95% confidence interval [CI] = 397-877, LE = 586 µm, 95% CI = 356-817) results in microperimetry sensitivity of approximately 0 dB. There was high degree of inter-eye symmetry for progression of EZ, ELM, and microperimetry sensitivity. Age was significantly correlated with the analyzed parameters (P < 0.001), although with low R² for each of them. Discussion: EZ may comprise a surrogate biomarker for prediction of visual function in X-linked RP caused by mutations in RPGR and, in turn, identification of appropriate patients for enrollment in clinical trials. As expected, age plays a role in predicting potential biomarkers and visual function, however, it should not be used to preclude patients for gene therapy due to the poor correlation and heterogeneity of disease onset. Translational Relevance: Biomarkers of visual function in RPGR-associated RP may lead to identification of appropriate patients for enrollment in clinical trials.


Assuntos
Proteínas do Olho , Terapia Genética , Retinose Pigmentar , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Adulto , Masculino , Estudos Retrospectivos , Proteínas do Olho/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/fisiopatologia , Adulto Jovem , Acuidade Visual/fisiologia , Feminino , Terapia Genética/métodos , Testes de Campo Visual , Ensaios Clínicos como Assunto , Seleção de Pacientes , Retina/diagnóstico por imagem , Retina/fisiopatologia , Retina/patologia , Mutação , Campos Visuais/fisiologia , Determinação de Ponto Final
8.
Ocul Oncol Pathol ; 10(3): 175-181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171206

RESUMO

Introduction: Retinal focal nodular gliosis (FNG), also known as vasoproliferative tumors (VPTs), are rare, benign vascular tumors associated with exudation with no current consensus on management. Herein, we describe the varied clinical course and management of 3 patients with retinal FNG, one of whom is associated with retinitis pigmentosa. Case Presentations: Case 1 is a 76-year-old female who presented with reduced vision and distortion secondary to a vitreous hemorrhage and epiretinal membrane (ERM) as complications of a known small peripheral retinal FNG. She underwent vitrectomy for the hemorrhage to relieve vascular traction and the ERM peel, and the tumor was kept under observation. Case 2 is a 24-year-old female with genetically uncharacterized retinitis pigmentosa-like phenotype who presented with gradual loss of central vision in one eye due to cystoid macular oedema (CMO). She was found to have two peripheral retinal areas of FNG located inferonasally. Tumors were treated with cryotherapy and adjuvant intraocular steroid implant to control the CMO. Case 3 is a 28-year-old female with retinitis pigmentosa secondary to genetically confirmed variant in CRB1 gene who presented with intractable right eye CMO and localized inferior serous retinal detachment secondary to a large inferotemporal FNG. Her left eye has no light perception vision due to previous extensive serous retinal detachment and anterior segment ischemia. The right eye tumor was managed with multiple rounds of cryotherapy and laser therapy to control the serous detachment. Despite this, the condition progressed and was ultimately treated with plaque brachytherapy. Unfortunately, this resulted in extensive retinal inflammation causing annular tractional retinal detachment which was treated with combined pars plana vitrectomy and scleral buckle. Conclusion: We characterized the retinal phenotype of 3 patients with retinal FNG (VPTs) and found them to have varied clinical courses requiring tailored surgical management. The case associated with retinitis pigmentosa had a known pathogenic variant in Crumbs homolog-1 (CRB1) gene affecting retinal structure and exhibited a more severe clinical course. It is therefore important for patients with retinal dystrophies to undergo thorough peripheral examinations and detect FNG early as they may require prompt, aggressive treatment.

9.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790254

RESUMO

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Assuntos
Sistemas CRISPR-Cas , Proteínas do Olho , Edição de Genes , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Masculino , Edição de Genes/métodos , Proteínas de Membrana/genética , Adulto Jovem , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Adulto , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Feminino , Simulação por Computador , Terapia Genética/métodos , Estudos Retrospectivos
10.
Prog Retin Eye Res ; 102: 101289, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127142

RESUMO

Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Terapia Genética/métodos , Humanos , Edição de Genes/métodos , Oftalmopatias/terapia , Oftalmopatias/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
11.
Transl Vis Sci Technol ; 13(6): 20, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916880

RESUMO

Purpose: Surgical innovation in ophthalmology is impeded by the physiological limits of human motion, and robotic assistance may facilitate an expansion of the surgical repertoire. We conducted a systematic review to identify ophthalmic procedures in which robotic systems have been trialled, evaluate their performance, and explore future directions for research and development of robotic techniques. Methods: The Cochrane Library, Embase, MEDLINE, Scopus, and Web of Science were searched. Screening adhered to five criteria: (1) English language; (2) primary research article; (3) human patients; (4) ophthalmological surgery; and (5) robot-assisted surgery. Quality assessment was conducted with Joanna Briggs Institute Tools for Critical Appraisal. The study protocol was registered prospectively (PROSPERO ID CRD42023449793). Results: Twelve studies were included. In comparative studies, there was no difference in the occurrence of ocular harms in robot-assisted procedures and conventional surgery. However, robotic assistance did not demonstrate consistent benefits over manual surgery in terms of effectiveness or practicality, likely reflecting the learning curve associated with these systems. Single studies indicated the potential of robotic assistance to improve the consistency of subretinal drug infusion and efficiency of instrument manipulation in vitreoretinal surgery. Conclusions: Proof-of-concept studies have demonstrated the potential of robotic assistance to facilitate procedures otherwise infeasible or impractical, and may broaden access to surgery. However, robot-assisted surgery has not yet demonstrated any significant benefits over standard surgical practice. Improving the speed and reducing perioperative requirements of robot-assisted surgery are particular priorities for research and innovation to improve the practicality of these novel techniques. Translational Relevance: This systematic review summarizes the potential and limitations of robotic systems for assisting eye surgery and outlines what is required for these systems to benefit patients and surgeons.


Assuntos
Procedimentos Cirúrgicos Oftalmológicos , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Procedimentos Cirúrgicos Oftalmológicos/métodos , Oftalmopatias/cirurgia
12.
Front Neurosci ; 18: 1415575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010943

RESUMO

Age-related macular degeneration (AMD) is a growing public health concern given the aging population and it is the leading cause of blindness in developed countries, affecting individuals over the age of 55 years. AMD affects the retinal pigment epithelium (RPE) and Bruch's membrane in the macula, leading to secondary photoreceptor degeneration and eventual loss of central vision. Late AMD is divided into two forms: neovascular AMD and geographic atrophy (GA). GA accounts for around 60% of late AMD and has been the most challenging subtype to treat. Recent advances include approval of new intravitreally administered therapeutics, pegcetacoplan (Syfovre) and avacincaptad pegol (Iveric Bio), which target complement factors C3 and C5, respectively, which slow down the rate of enlargement of the area of atrophy. However, there is currently no treatment to reverse the central vision loss associated with GA. Optogenetics may provide a strategy for rescuing visual function in GA by imparting light-sensitivity to the surviving inner retina (i.e., retinal ganglion cells or bipolar cells). It takes advantage of residual inner retinal architecture to transmit visual stimuli along the visual pathway, while a wide range of photosensitive proteins are available for consideration. Herein, we review the anatomical changes in GA, discuss the suitability of optogenetic therapeutic sensors in different target cells in pre-clinical models, and consider the advantages and disadvantages of different routes of administration of therapeutic vectors.

13.
Ophthalmic Genet ; : 1-7, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232248

RESUMO

BACKGROUND: CFAP410 (Cilia and Flagella Associated Protein 410) encodes a protein that has an important role in the development and function of cilia. In ophthalmology, pathogenic variants in CFAP410 have been described in association with cone rod dystrophy, retinitis pigmentosa, with or without macular staphyloma, or with systemic abnormalities such as skeletal dysplasia and amyotrophic lateral sclerosis. Herein, we report a consanguineous family with a novel homozygous CFAP410 c.335_346del variant with cone only degeneration and no systemic features. METHODS: A retrospective analysis of ophthalmic history, examination, retinal imaging, electrophysiology and microperimetry was performed as well as genetic testing with in silico pathogenicity predictions and a literature review. RESULTS: A systemically well 28-year-old female of Pakistani ethnicity with parental consanguinity and no relevant family history, presented with childhood-onset poor central vision and photophobia. Best-corrected visual acuity and colour vision were reduced (0.5 LogMAR, 6/17 Ishihara plates (right) and 0.6 LogMAR, 3/17 Ishihara plates (left). Fundus examination showed no pigmentary retinopathy, no macular staphyloma and autofluorescence was unremarkable. Optical coherence tomography showed subtle signs of intermittent disruption of the ellipsoid zone. Microperimetry demonstrated a reduction in central retinal sensitivity. Electrodiagnostic testing confirmed a reduction in cone-driven responses. Whole-genome sequencing identified an in-frame homozygous deletion of 12 base pairs at c.335_346del in CFAP410. CONCLUSIONS: The non-syndromic cone dystrophy phenotype reported herein expands the genotypic and phenotypic spectra of CFAP410-associated ciliopathies and highlights the need for light of potential future genetic therapies.

14.
Cells ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37566092

RESUMO

Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer.


Assuntos
Atrofia Óptica Hereditária de Leber , Adulto Jovem , Humanos , Masculino , Feminino , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Antioxidantes/uso terapêutico , Sexismo , DNA Mitocondrial/genética , Terapia Genética/métodos
15.
Nat Biomed Eng ; 7(4): 387-404, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102278

RESUMO

Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.


Assuntos
Retina , Degeneração Retiniana , Humanos , Degeneração Retiniana/cirurgia , Visão Ocular , Transplante de Células , Bioengenharia
16.
Cells ; 12(16)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626902

RESUMO

Age-related macular degeneration (AMD) is the leading cause of vision loss and visual impairment in people over 50 years of age. In the current therapeutic landscape, intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapies have been central to the management of neovascular AMD (also known as wet AMD), whereas treatments for geographic atrophy have lagged behind. Several therapeutic approaches are being developed for geographic atrophy with the goal of either slowing down disease progression or reversing sight loss. Such strategies target the inflammatory pathways, complement cascade, visual cycle or neuroprotective mechanisms to slow down the degeneration. In addition, retinal implants have been tried for vision restoration and stem cell therapies for potentially a dual purpose of slowing down the degeneration and restoring visual function. In particular, therapies focusing on the complement pathway have shown promising results with the FDA approved pegcetacoplan, a complement C3 inhibitor, and avacincaptad pegol, a complement C5 inhibitor. In this review, we discuss the mechanisms of inflammation in AMD and outline the therapeutic landscapes of atrophy AMD. Improved understanding of the various pathway components and their interplay in this complex neuroinflammatory degeneration will guide the development of current and future therapeutic options, such as optogenetic therapy.


Assuntos
Atrofia Geográfica , Degeneração Macular Exsudativa , Humanos , Pessoa de Meia-Idade , Atrofia Geográfica/terapia , Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Inflamação
17.
Ophthalmic Genet ; 44(6): 577-584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36602268

RESUMO

BACKGROUND: Ciliopathies responsible for retinitis pigmentosa can also cause systemic manifestations. RPGR is a ciliary gene and pathogenic variants in RPGR cause a retinal ciliopathy, the commonest cause of X-linked recessive retinitis pigmentosa. The RPGR protein interacts with numerous other ciliary proteins present in the transition zone of both motile and sensory cilia, and may play an important role in regulating ciliary protein transport. There has been a growing, putative association of RPGR variants with systemic ciliopathies: mainly sino-respiratory infections and primary ciliary dyskinesia. MATERIALS AND METHODS: Retrospective case series of patients with RPGR-RP presenting to Oxford Eye Hospital with systemic disease. RESULTS: We report three children with RPGR-related rod-cone dystrophy, all of whom have mutations in the N-terminus of RPGR. Two cases co-presented with confirmed diagnoses of primary ciliary dyskinesia and one case with multiple sino-respiratory symptoms strongly suggestive of primary ciliary dyskinesia. These and all previously reported RPGR co-pathologies relate to ciliopathies and have no other systemic associations. CONCLUSIONS: The link between RPGR variants and a systemic ciliopathy remains plausible, but currently unproven.


Assuntos
Transtornos da Motilidade Ciliar , Proteínas do Olho , Distrofias Retinianas , Distrofias Retinianas/complicações , Distrofias Retinianas/genética , Humanos , Proteínas do Olho/genética , Masculino , Criança , Adolescente , Transtornos da Motilidade Ciliar/complicações , Transtornos da Motilidade Ciliar/genética
18.
Transl Vis Sci Technol ; 12(9): 24, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773503

RESUMO

Purpose: In patients with choroideremia, it is not known how smooth and mottled patterns on short-wavelength fundus autofluorescence (AF) imaging relate to retinal function. Methods: A retrospective case-note review was undertaken on 190 patients with choroideremia at two specialist centers for retinal genetics. Twenty patients with both smooth and mottled zones on short-wavelength AF imaging and concurrent mesopic microperimetry assessments were included. Mean retinal sensitivities within the smooth and mottled zones were compared between choroideremia patients, and identical points on mesopic microperimetry collected from 12 age-matched controls. Longitudinal analyses were undertaken at 2 and 5 years in a subset of patients. Results: In patients with choroideremia, mean retinal sensitivities at baseline were significantly greater in the smooth zone (26.1 ± 2.0 dB) versus the mottled zone (20.5 ± 4.2 dB) (P < 0.0001). Mean retinal sensitivities at baseline were similar in the smooth zone between choroideremia patients and controls (P = 0.054) but significantly impaired in the mottled zone in choroideremia compared to controls (P < 0.0001). The rate of decline in total sensitivity over 5 years was not significant in either the smooth or mottled zone in a small subset of choroideremia patients (n = 7; P = 0.344). Conclusions: In choroideremia, retinal sensitivity as determined by microperimetry correlates with patterns on AF imaging: retinal function in the smooth zone, where the retinal pigment epithelium is anatomically preserved, is similar to controls, but retinal sensitivity in the mottled zone is impaired. Translational Relevance: Patterns on AF imaging may represent a novel, objective outcome measure for clinical trials in choroideremia as a surrogate for retinal function.


Assuntos
Coroideremia , Humanos , Coroideremia/genética , Testes de Campo Visual , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Acuidade Visual
19.
Biomolecules ; 13(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37892166

RESUMO

Our study evaluated the morphological and functional outcomes, and the side effects, of voretigene neparvovec (VN) gene therapy for RPE65-mediated inherited retinal dystrophies (IRDs) in 12 eyes (six patients) at the Oxford Eye Hospital with a mean follow-up duration of 8.2 (range 1-12) months. All patients reported a subjective vision improvement 1 month after gene therapy. Best-corrected visual acuity (BCVA) remained stable (baseline: 1.28 (±0.71) vs. last follow-up: 1.46 (±0.60); p = 0.25). Average white Full-Field Stimulus Testing (FST) showed a trend towards improvement (baseline: -4.41 (±10.62) dB vs. last follow-up: -11.98 (±13.83) dB; p = 0.18). No changes in central retinal thickness or macular volume were observed. The side effects included mild intraocular inflammation (two eyes) and cataracts (four eyes). Retinal atrophy occurred in 10 eyes (eight mild, two severe) but did not impact FST measurements during the follow-up period. Increased intraocular pressure (IOP) was noted in three patients (six eyes); four eyes (two patients) required glaucoma surgery. The overall safety and effectiveness of VN treatment in our cohort align with previous VN clinical trials, except for the higher occurrence of retinal atrophy and increased IOP in our cohort. This suggests that raised IOP and retinal atrophy may be more common than previously reported.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glaucoma , Distrofias Retinianas , Humanos , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Visão Ocular , Atrofia
20.
Front Mol Neurosci ; 15: 1068185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710928

RESUMO

Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA