Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Physiol ; 181(3): 976-992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31527089

RESUMO

NADPH-thioredoxin reductase C (NTRC) forms a separate thiol-reduction cascade in plastids, combining both NADPH-thioredoxin reductase and thioredoxin activities on a single polypeptide. While NTRC is an important regulator of photosynthetic processes in leaves, its function in heterotrophic tissues remains unclear. Here, we focus on the role of NTRC in developing tomato (Solanum lycopersicum) fruits representing heterotrophic storage organs important for agriculture and human diet. We used a fruit-specific promoter to decrease NTRC expression by RNA interference in developing tomato fruits by 60% to 80% compared to the wild type. This led to a decrease in fruit growth, resulting in smaller and lighter fully ripe fruits containing less dry matter and more water. In immature fruits, NTRC downregulation decreased transient starch accumulation, which led to a subsequent decrease in soluble sugars in ripe fruits. The inhibition of starch synthesis was associated with a decrease in the redox-activation state of ADP-Glc pyrophosphorylase and soluble starch synthase, which catalyze the first committed and final polymerizing steps, respectively, of starch biosynthesis. This was accompanied by a decrease in the level of ADP-Glc. NTRC downregulation also led to a strong increase in the reductive states of NAD(H) and NADP(H) redox systems. Metabolite profiling of NTRC-RNA interference lines revealed increased organic and amino acid levels, but reduced sugar levels, implying that NTRC regulates the osmotic balance of developing fruits. These results indicate that NTRC acts as a central hub in regulating carbon metabolism and redox balance in heterotrophic tomato fruits, affecting fruit development as well as final fruit size and quality.


Assuntos
Frutas/enzimologia , Solanum lycopersicum/enzimologia , Amido/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Metabolismo dos Carboidratos , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Metabolômica , Oxirredução , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Tiorredoxina Dissulfeto Redutase/genética
2.
Plant Cell Physiol ; 59(10): 2155-2164, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30011001

RESUMO

The chloroplast redox network is composed of a complex set of thioredoxins (Trxs), reduced by ferredoxin (Fdx) via a Fdx-dependent Trx reductase (FTR), and an NADPH-dependent Trx reductase with a joint Trx domain, NTRC, which efficiently reduces 2-Cys peroxiredoxins (2-Cys Prxs). Recently, it was proposed that the redox balance of 2-Cys Prxs maintains the redox state of f-type Trxs, thus allowing the proper redox regulation of Calvin-Benson cycle enzymes such as fructose 1,6-bisphosphatase (FBPase). Here, we have addressed whether the action of 2-Cys Prxs is also exerted on Trx x. To that end, an Arabidopsis thaliana quadruple mutant, ntrc-trxx-Δ2cp, which is knocked out for NTRC and Trx x, and contains severely decreased levels of 2-Cys Prxs, was generated. In contrast to ntrc-trxx, which showed a severe growth inhibition phenotype and poor photosynthetic performance, the ntrc-trxx-Δ2cp mutant showed a significant recovery of growth rate and photosynthetic efficiency, indicating that the content of 2-Cys Prxs is critical for the performance of plants lacking both NTRC and Trx x. Light-dependent reduction of FBPase was severely impaired in mutant plants lacking NTRC or NTRC plus Trx x, despite the fact that neither NTRC nor Trx x is an effective reductant of this enzyme. However, FBPase reduction was recovered in the ntrc-trxx-Δ2cp mutant. Our results show that the redox balance of 2-Cys Prxs, which is mostly dependent on NTRC, modulates the activity of Trx x in a similar way as f-type Trxs, thus suggesting that the activity of these Trxs is highly interconnected.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Oxirredução , Tiorredoxinas/metabolismo
3.
Plant Physiol ; 169(3): 1766-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26338951

RESUMO

Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP(+) and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Malato Desidrogenase (NADP+)/genética , Malato Desidrogenase (NADP+)/metabolismo , Metaboloma , Oxirredução , Fenótipo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Amido/metabolismo , Tiorredoxina Dissulfeto Redutase/genética
4.
Ann Bot ; 116(4): 695-702, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26229066

RESUMO

BACKGROUND AND AIMS: Auxin is the main phytohormone controlling root development in plants. This study uses pharmacological and genetic approaches to examine the role of auxin and nitric oxide (NO) in the activation of NADPH-dependent thioredoxin reductase (NTR), and the effect that this activity has on root growth responses in Arabidopsis thaliana. METHODS: Arabidopsis seedlings were treated with auxin with or without the NTR inhibitors auranofin (ANF) and 1-chloro-2, 4-dinitrobenzene (DNCB). NTR activity, lateral root (LR) formation and S-nitrosothiol content were measured in roots. Protein S-nitrosylation was analysed by the biotin switch method in wild-type arabidopsis and in the double mutant ntra ntrb. KEY RESULTS: The auxin-mediated induction of NTR activity is inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), suggesting that NO is downstream of auxin in this regulatory pathway. The NTR inhibitors ANF and DNCB prevent auxin-mediated activation of NTR and LR formation. Moreover, ANF and DNCB also inhibit auxin-induced DR5 : : GUS and BA3 : : GUS gene expression, suggesting that the auxin signalling pathway is compromised without full NTR activity. Treatment of roots with ANF and DNCB increases total nitrosothiols (SNO) content and protein S-nitrosylation, suggesting a role of the NTR-thioredoxin (Trx)-redox system in protein denitrosylation. In agreement with these results, the level of S-nitrosylated proteins is increased in the arabidopsis double mutant ntra ntrb as compared with the wild-type. CONCLUSIONS: The results support for the idea that NTR is involved in protein denitrosylation during auxin-mediated root development. The fact that a high NO concentration induces NTR activity suggests that a feedback mechanism to control massive and unregulated protein S-nitrosylation could be operating in plant cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
5.
J Biol Chem ; 287(40): 33865-72, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22833674

RESUMO

NADPH-dependent thioredoxin reductases (NTRs) contain a flavin cofactor and a disulfide as redox-active groups. The catalytic mechanism of standard NTR involves a large conformational change between two configurations. Oxygenic photosynthetic organisms possess a plastid-localized NTR, called NTRC, with a thioredoxin module fused at the C terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs) and thus is involved in the protection against oxidative stress, among other functions. Although the mechanism of electron transfer of canonical NTRs is well established, it is not yet known in NTRC. By employing stopped-flow spectroscopy, we have carried out a comparative kinetic study of the electron transfer reactions involving NTRC, the truncated NTR module of NTRC, and NTRB, a canonical plant NTR. Whereas the three NTRs maintain the conformational change associated with the reductive cycle of catalysis, NTRC intramolecular electron transfer to the thioredoxin module presents two kinetic components (k(ET) of ~2 and 0.1 s(-1)), indicating the occurrence of additional dynamic motions. Moreover, the dynamic features associated with the electron transfer to the thioredoxin module are altered in the presence of 2-Cys Prx. NTRC shows structural constraints that may locate the thioredoxin module in positions with different efficiencies for electron transfer, the presence of 2-Cys Prx shifting the conformational equilibrium of the thioredoxin module to a specific position, which is not the most efficient.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Arabidopsis/metabolismo , Dissulfetos/química , Transporte de Elétrons , Elétrons , Flavinas/química , Cinética , Modelos Biológicos , Oryza , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/química , Plastídeos/metabolismo , Conformação Proteica , Tiorredoxinas
6.
Redox Biol ; 63: 102731, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245286

RESUMO

Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Oxirredução , Antioxidantes/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(24): 9908-13, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19470473

RESUMO

Plants have an unusual plastid-localized NADP-thioredoxin reductase C (NTRC) containing both an NADP-thioredoxin reductase (NTR) and a thioredoxin (Trx) domain in a single polypeptide. Although NTRC is known to supply reductant for detoxifying hydrogen peroxide in the dark, its other functions are unknown. We now report that NTRC plays a previously unrecognized role in the redox regulation of ADP-glucose pyrophosphorylase (AGPase), a central enzyme of starch synthesis. When supplied NADPH, NTRC activated AGPase in vitro in a redox reaction that required the active site cysteines of both domains of the enzyme. In leaves, AGPase was activated in planta either by light or external feeding of sucrose in the dark. Leaves of an Arabidopsis NTRC KO mutant showed a decrease both in the extent of redox activation of AGPase and in the enhancement of starch synthesis either in the light (by 40-60%) or in the dark after treatment with external sucrose (by almost 100%). The light-dependent activation of AGPase in isolated chloroplasts, by contrast, was unaffected. In nonphotosynthetic tissue (roots), KO of NTRC decreased redox activation of AGPase and starch synthesis in response to light or external sucrose by almost 90%. The results provide biochemical and genetic evidence for a role of NTRC in regulating starch synthesis in response to either light or sucrose. The data also suggest that the Trx domain of NTRC and, to a lesser extent, free Trxs linked to ferredoxin enable amyloplasts of distant sink tissues to sense light used in photosynthesis by leaf chloroplasts and adjust heterotrophic starch synthesis accordingly.


Assuntos
Cloroplastos/metabolismo , Luz , Plastídeos/metabolismo , Amido/biossíntese , Sacarose/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Biocatálise , Domínio Catalítico , Escuridão , Folhas de Planta/metabolismo
8.
J Biol Chem ; 285(45): 34485-92, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20736168

RESUMO

In eukaryotic organisms, hydrogen peroxide has a dual effect; it is potentially toxic for the cell but also has an important signaling activity. According to the previously proposed floodgate hypothesis, the signaling activity of hydrogen peroxide in eukaryotes requires a transient increase in its concentration, which is due to the inactivation by overoxidation of 2-Cys peroxiredoxin (2-Cys Prx). Sensitivity to overoxidation depends on the structural GGLG and YF motifs present in eukaryotic 2-Cys Prxs and is believed to be absent from prokaryotic enzymes, thus representing a paradoxical gain of function exclusive to eukaryotic organisms. Here we show that 2-Cys Prxs from several prokaryotic organisms, including cyanobacteria, contain the GG(L/V/I)G and YF motifs characteristic of sensitive enzymes. In search of the existence of overoxidation-sensitive 2-Cys Prxs in prokaryotes, we have analyzed the sensitivity to overoxidation of 2-Cys Prxs from two cyanobacterial strains, Anabaena sp. PCC7120 and Synechocystis sp. PCC6803. In vitro analysis of wild type and mutant variants of the Anabaena 2-Cys Prx showed that this enzyme is overoxidized at the peroxidatic cysteine residue, thus constituting an exception among prokaryotes. Moreover, the 2-Cys Prx from Anabaena is readily and reversibly overoxidized in vivo in response to high light and hydrogen peroxide, showing higher sensitivity to overoxidation than the Synechocystis enzyme. These cyanobacterial strains have different strategies to cope with hydrogen peroxide. While Synechocystis has low content of less sensitive 2-Cys Prx and high catalase activity, Anabaena contains abundant and sensitive 2-Cys Prx, but low catalase activity, which is remarkably similar to the chloroplast system.


Assuntos
Anabaena/enzimologia , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Synechocystis/enzimologia , Motivos de Aminoácidos , Anabaena/genética , Proteínas de Bactérias/genética , Catalase/genética , Catalase/metabolismo , Cisteína/genética , Oxirredução , Estresse Oxidativo/fisiologia , Peroxirredoxinas/genética , Synechocystis/genética
9.
Physiol Plant ; 133(3): 516-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18346073

RESUMO

Despite being the primary source of energy in the biosphere, photosynthesis is a process that inevitably produces reactive oxygen species. Chloroplasts are a major source of hydrogen peroxide production in plant cells; therefore, different systems for peroxide reduction, such as ascorbate peroxidase and peroxiredoxins (Prxs), are found in this organelle. Most of the reducing power required for hydrogen peroxide reduction by these systems is provided by Fd reduced by the photosynthetic electron transport chain; hence, the function of these systems is highly dependent on light. Recently, it was described a novel plastidial enzyme, stated NTRC, formed by a thioredoxin reductase (NTR) domain at the N-terminus and a thioredoxin (Trx) domain at the C-terminus. NTRC is able to conjugate both NTR and Trx activities to efficiently reduce 2-Cys Prx using NADPH as a source of reducing power. Based on these results, it was proposed that NTRC is a new pathway to transfer reducing power to the chloroplast detoxification system, allowing the use of NADPH, besides reduced Fd, for such function. In this article, the most important features of NTRC are summarized and the implications of this novel activity in the context of chloroplast protection against oxidative damage are discussed.


Assuntos
Cloroplastos/metabolismo , NADP/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Sítios de Ligação/genética , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Tiorredoxinas/metabolismo
10.
Biochem J ; 397(3): 529-36, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16613587

RESUMO

PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed.


Assuntos
Apoptose , Núcleo Celular/metabolismo , Endodesoxirribonucleases/metabolismo , Triticum/citologia , Extratos Celulares , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/ultraestrutura , Sistema Livre de Células , Fragmentação do DNA , Células HCT116 , Humanos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA