RESUMO
BACKGROUND & AIMS: The NKG2D system is a potent immunosurveillance mechanism in cancer, wherein the activating NK cell receptor (NKG2D) on immune cells recognises its cognate ligands on tumour cells. Herein, we evaluated the expression of NKG2D ligands in hepatocellular carcinoma (HCC), in both humans and mice, taking the genomic features of HCC tumours into account. METHODS: The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was analysed in large human HCC datasets by Fluidigm TaqMan and RNA-seq methods, and in 2 mouse models (mRNA and protein levels) reproducing the features of both major groups of human tumours. RESULTS: We provide compelling evidence that expression of the MICA and MICB ligands in human HCC is associated with tumour aggressiveness and poor patient outcome. We also found that the expression of ULBP1 and ULBP2 was associated with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs displaying low levels of inflammation and associated with a better prognosis. We also found an inverse correlation between ULBP1/2 expression levels and the expression of ß-catenin target genes in patients with HCC, suggesting a role for ß-catenin signalling in inhibiting expression. We showed in HCC mouse models that ß-catenin signalling downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through TCF4 binding. CONCLUSIONS: We demonstrate that the expression of NKG2D ligands is associated with aggressive liver tumorigenesis and that the downregulation of these ligands by ß-catenin signalling may account for the less aggressive phenotype of CTNNB1-mutated HCC tumours. LAY SUMMARY: The NKG2D system is a potent immunosurveillance mechanism in cancer. However, its role in hepatocellular carcinoma development has not been widely investigated. Herein, we should that the expression of NKG2D ligands by tumour cells is associated with a more aggressive tumour subtype.
Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/genética , beta Catenina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
OBJECTIVES: Polyploidy is a fascinating characteristic of liver parenchyma. Hepatocyte polyploidy depends on the DNA content of each nucleus (nuclear ploidy) and the number of nuclei per cell (cellular ploidy). Which role can be assigned to polyploidy during human hepatocellular carcinoma (HCC) development is still an open question. Here, we investigated whether a specific ploidy spectrum is associated with clinical and molecular features of HCC. DESIGN: Ploidy spectra were determined on surgically resected tissues from patients with HCC as well as healthy control tissues. To define ploidy profiles, a quantitative and qualitative in situ imaging approach was used on paraffin tissue liver sections. RESULTS: We first demonstrated that polyploid hepatocytes are the major components of human liver parenchyma, polyploidy being mainly cellular (binuclear hepatocytes). Across liver lobules, polyploid hepatocytes do not exhibit a specific zonation pattern. During liver tumorigenesis, cellular ploidy is drastically reduced; binuclear polyploid hepatocytes are barely present in HCC tumours. Remarkably, nuclear ploidy is specifically amplified in HCC tumours. In fact, nuclear ploidy is amplified in HCCs harbouring a low degree of differentiation and TP53 mutations. Finally, our results demonstrated that highly polyploid tumours are associated with a poor prognosis. CONCLUSIONS: Our results underline the importance of quantification of cellular and nuclear ploidy spectra during HCC tumorigenesis.
Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Poliploidia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Estudos de Casos e Controles , Diferenciação Celular/genética , Núcleo Celular/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Feminino , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
Leukocyte cell-derived chemotaxin-2 (LECT2) was originally identified as a hepatocyte-secreted chemokine-like factor and a positive target of ß-catenin signaling. Here, we dissected out the mechanisms by which LECT2 modulates hepatocellular carcinoma (HCC) development using both HCC mouse models and human HCC samples. We have demonstrated that LECT2 exhibits dual abilities as it has profound repercussions on the tumor phenotype itself and the immune microenvironment. Its absence confers Ctnnb-1-mutated tumor hepatocytes a stronger ability to undergo epithelial to mesenchymal transition and fosters the accumulation of pejorative inflammatory monocytes harboring immunosuppressive properties and strong tumor-promoting potential. Consistent with our HCC mouse model, a low level of LECT2 in human HCC is strongly associated with high tumor grade and the presence of inflammatory infiltrates, emphasizing the clinical value of LECT2 in human liver tumorigenesis. Conclusion: Our findings have demonstrated that LECT2 is a key player in liver tumorigenesis because its absence reshapes the tumor microenvironment and the tumor phenotype, revealing LECT2 as a promising immunotherapeutic option for HCC.
Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Monócitos/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Animais , Carcinoma Hepatocelular/etiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação/complicações , Neoplasias Hepáticas/etiologia , Camundongos , Células Tumorais CultivadasRESUMO
BACKGROUND: AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different systems, AMPK is also required for proper cell division. In the current study, we evaluated the potential effect of the AMPK catalytic subunit, AMPKα1, on hepatocyte proliferation. METHODS: Hepatocyte proliferation was determined in AMPKα1 knockout and wild-type mice in vivo after two thirds partial hepatectomy, and in vitro in primary hepatocyte cultures. The activities of metabolic and cell cycle-related signaling pathways were measured. RESULTS: After partial hepatectomy, hepatocytes proliferated rapidly, correlating with increased AMPK phosphorylation. Deletion of AMPKα1 delayed liver regeneration by impacting on G1/S transition phase. The proliferative defect of AMPKα1-deficient hepatocytes was cell autonomous, and independent of energy balance. The priming phase, lipid droplet accumulation, protein anabolic responses and growth factor activation after partial hepatectomy occurred normally in the absence of AMPKα1 activity. By contrast, mRNA and protein expression of cyclin A2, a key driver of S phase progression, were compromised in the absence of AMPK activity. Importantly, AMPKα1 controlled cyclin A2 transcription mainly through the ATF/CREB element. CONCLUSIONS: Our study highlights a novel role for AMPKα1 as a positive regulator of hepatocyte division occurring independently of energy balance.
Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Proliferação de Células , Ciclina A2/fisiologia , Hepatócitos/fisiologia , Animais , Ciclina A2/genética , Metabolismo Energético , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL , Fase SRESUMO
The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Camundongos , Animais , Lactente , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/diagnóstico por imagem , Dietilnitrosamina/toxicidade , Camundongos Endogâmicos C57BL , Carcinogênese/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado/diagnóstico por imagem , Fígado/patologia , UltrassonografiaRESUMO
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
RESUMO
Non-alcoholic steatotic liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD has a major effect on the intrinsic proliferative properties of hepatocytes. Here, we investigated the mechanisms underlying the activation of DNA damage response during NAFLD. Proliferating mouse NAFLD hepatocytes harbor replication stress (RS) with an alteration of the replication fork's speed and activation of ATR pathway, which is sufficient to cause DNA breaks. Nucleotide pool imbalance occurring during NAFLD is the key driver of RS. Remarkably, DNA lesions drive cGAS/STING pathway activation, a major component of cells' intrinsic immune response. The translational significance of this study was reiterated by showing that lipid overload in proliferating HepaRG was sufficient to induce RS and nucleotide pool imbalance. Moreover, livers from NAFLD patients displayed nucleotide pathway deregulation and cGAS/STING gene alteration. Altogether, our findings shed light on the mechanisms by which damaged NAFLD hepatocytes might promote disease progression.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dano ao DNA , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Nucleotídeos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismoRESUMO
Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.
RESUMO
Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.
Assuntos
Cromossomos Humanos/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Poliploidia , Adulto , Animais , Diferenciação Celular , Divisão Celular , Senescência Celular , Cromossomos Humanos/genética , Hepatectomia , Hepatócitos/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , RegeneraçãoRESUMO
Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.
Assuntos
Hepatócitos/fisiologia , Fígado/embriologia , Fígado/fisiopatologia , Poliploidia , Animais , Diferenciação Celular , Homeostase , Humanos , Fígado/patologiaRESUMO
Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and therefore possibly a gain of function. Alternately, it can be associated with development of disease such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division. Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs notably during liver development, but also in adults because of cellular stress. Recent progresses have unraveled the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.
Assuntos
Fígado/metabolismo , Fígado/patologia , Poliploidia , Adulto , Animais , Divisão Celular/genética , Fusão Celular , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/citologiaRESUMO
Mammalian p38α MAPK (Mitogen-Activated Protein Kinase) transduces a variety of extracellular signals that regulate cellular processes, such as inflammation, differentiation, proliferation or apoptosis. In the liver, depending of the physiopathological context, p38α acts as a negative regulator of hepatocyte proliferation as well as a promotor of inflammatory processes. However, its function during an acute injury, in adult liver, remains uncharacterized. In this study, using mice that are deficient in p38α specifically in mature hepatocytes, we unexpectedly found that lack of p38α protected against acute injury induced by CCl4 compound. We demonstrated that the hepatoprotective effect alleviated ROS accumulation and shaped the inflammatory response to promote efficient tissue repair. Mechanistically, we provided strong evidence that Ccl2/Ccl5 chemokines were crucial for a proper hepatoprotective response observed secondary to p38α ablation. Indeed, antibody blockade of Ccl2/Ccl5 was sufficient to abrogate hepatoprotection through a concomitant decrease of both inflammatory cells recruitment and antioxidative response that result ultimately in higher liver damages. Our findings suggest that targeting p38α expression and consequently orientating immune response may represent an attractive approach to favor tissue recovery after acute liver injury.
Assuntos
Regeneração Hepática , Fígado/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Tetracloreto de Carbono/efeitos adversos , Diferenciação Celular , Proliferação de Células , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Cruzamentos Genéticos , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Hepatócitos , Inflamação , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismoRESUMO
Liver kinase B1 (LKB1) is involved in several biological processes and is a key regulator of hepatic metabolism and polarity. Here, we demonstrate that the master kinase LKB1 plays a dual role in liver regeneration, independently of its major target, AMP-activated protein kinase (AMPK). We found that the loss of hepatic Lkb1 expression promoted hepatocyte proliferation acceleration independently of metabolic/energetic balance. LKB1 regulates G0/G1 progression, specifically by controlling epidermal growth factor receptor (EGFR) signaling. Furthermore, later in regeneration, LKB1 controls mitotic fidelity. The deletion of Lkb1 results in major alterations to mitotic spindle formation along the polarity axis. Thus, LKB1 deficiency alters ploidy profile at late stages of regeneration. Our findings highlight the dual role of LKB1 in liver regeneration, as a guardian of hepatocyte proliferation and genomic integrity.
Assuntos
Genoma , Hepatócitos/citologia , Hepatócitos/metabolismo , Regeneração Hepática/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proliferação de Células , Ativação Enzimática , Receptores ErbB/metabolismo , Deleção de Genes , Inativação Gênica , Fígado/citologia , Camundongos , Mitose , Ploidias , Proteínas Serina-Treonina Quinases/deficiência , Transdução de SinaisRESUMO
mid1p is a key factor for the central positioning of the cytokinetic ring in Schizosaccharomyces pombe. In interphase and early mitosis, mid1p forms a medial cortical band overlying the nucleus, which may represent a landmark for cytokinetic ring assembly. It compacts before anaphase into a tight ring with other cytokinetic ring components. We show here that mid1p binds to the medial cortex by at least two independent means. First, mid1p C-terminus association with the cortex requires a putative amphipathic helix adjacent to mid1p nuclear localization sequence (NLS), which is predicted to insert directly into the lipid bilayer. This association is stabilized by the polybasic NLS. mid1p mutated within the helix and the NLS forms abnormal filaments in early mitosis that are not properly anchored to the medial cortex. Misplaced rings assemble in late mitosis, indicating that mid1p C-terminus binding to membranes stabilizes cytokinetic ring position. Second, the N terminus of mid1p has the ability to associate faintly with the medial cortex and is sufficient to form tight rings. In addition, we show that mid1p oligomerizes. We propose that membrane-bound oligomers of mid1p assemble recruitment "platforms" for cytokinetic ring components at the medial cortex and stabilize the ring position during its compaction.
Assuntos
Citocinese , Proteínas Fúngicas/metabolismo , Membranas/metabolismo , Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Fracionamento Celular , Núcleo Celular/química , Proteínas Fúngicas/química , Glutationa Transferase/metabolismo , Bicamadas Lipídicas/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Mutação , Sinais de Localização Nuclear , Fotodegradação , Testes de Precipitina , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Fatores de TempoRESUMO
Polyploidy is defined as an increase in genome DNA content and is observed in all mammalian species. Polyploidy is a common characteristic of hepatocytes. Polyploidization occurs mainly during liver development, but also in adults with increasing age or due to cellular stress. During liver development, hepatocytes polyploidization occurs through cytokinesis failure leading to the genesis of binucleate hepatocytes. Recently, Hsu et al. demonstrated that miR-122 is a key regulator of hepatic binucleation. In fact, during liver development, miR-122 directly antagonizes procytokinesis targets and thus induces cytokinesis failure leading to the genesis of binucleate hepatocytes.
Assuntos
Hepatócitos/ultraestrutura , Fígado/ultraestrutura , MicroRNAs/fisiologia , Poliploidia , Animais , Núcleo Celular/fisiologia , Humanos , Fígado/crescimento & desenvolvimentoRESUMO
Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development.
Assuntos
Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Poliploidia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dano ao DNA , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de RiscoAssuntos
Fígado/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/genética , Ploidias , Proteínas Proto-Oncogênicas c-akt , Aneuploidia , Divisão Celular , Hepatócitos/citologia , Hepatócitos/enzimologia , Hepatócitos/fisiologia , Humanos , Lactente , Recém-Nascido , Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , PoliploidiaRESUMO
Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.
RESUMO
Rapamycin is an antibiotic inhibiting eukaryotic cell growth and proliferation by acting on target of rapamycin (TOR) kinase. Mammalian TOR (mTOR) is thought to work through 2 independent complexes to regulate cell size and cell replication, and these 2 complexes show differential sensitivity to rapamycin. Here we combine functional genetics and pharmacological treatments to analyze rapamycin-sensitive mTOR substrates that are involved in cell proliferation and tissue regeneration after partial hepatectomy in mice. After hepatectomy, hepatocytes proliferated rapidly, correlating with increased S6 kinase phosphorylation, while treatment with rapamycin derivatives impaired regeneration and blocked S6 kinase activation. In addition, genetic deletion of S6 kinase 1 (S6K1) caused a delay in S phase entry in hepatocytes after hepatectomy. The proliferative defect of S6K1-deficient hepatocytes was cell autonomous, as it was also observed in primary cultures and hepatic overexpression of S6K1-rescued proliferation. We found that S6K1 controlled steady-state levels of cyclin D1 (Ccnd1) mRNA in liver, and cyclin D1 expression was required to promote hepatocyte cell cycle. Notably, in vivo overexpression of cyclin D1 was sufficient to restore the proliferative capacity of S6K-null livers. The identification of an S6K1-dependent mechanism participating in cell proliferation in vivo may be relevant for cancer cells displaying high mTOR complex 1 activity and cyclin D1 accumulation.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Regeneração Hepática/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sirolimo/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Genótipo , Hepatectomia , Hepatócitos/citologia , Hepatócitos/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos , Proteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina-Treonina Quinases TORRESUMO
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.