Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Qual ; 47(4): 795-804, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025041

RESUMO

The quantification of groundwater NO loading associated with a specific field or set of management practices so that groundwater quality improvements can be objectively assessed is a major challenge. The magnitude and timing of NO export from a single agricultural field under raspberry ( L.) production were investigated by combining high-resolution groundwater NO concentration profiles (sampled using passive diffusion samplers) with Darcy's flux estimation at the field's down-gradient edge (based on field-measured hydraulic gradients and laboratory-estimated hydraulic conductivity). Annual recharge estimated using Darcy's law (1002 mm) was similar to that obtained using two other approaches. The similarity in the rate of Cl applied to the field and the estimated export flux over the 1-yr monitoring period (51 vs. 56 kg Cl ha) suggested the mass flux estimation approach was robust. An estimated 80 kg NO-N ha was exported from the agricultural field over the 1-yr monitoring period. The greatest monthly groundwater mass flux exported was observed in February and March (∼11 kg NO-N ha), and was associated with NO leached from the soil zone during the onset of precipitation in the previous autumn. Provided the groundwater recharged from the field of interest can be isolated within a vertical profile, this approach is an effective method for obtaining spatially integrated estimates of the magnitude and timing of NO loading to groundwater.


Assuntos
Água Subterrânea/química , Nitratos/análise , Monitoramento Ambiental , Solo , Poluentes Químicos da Água
2.
J Contam Hydrol ; 256: 104200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196405

RESUMO

Over-application of manure to agricultural fields can leach nitrogen below the root zone and contaminate groundwater. The goal of this study was to evaluate the factors affecting the spatial and temporal distribution of nitrate in shallow groundwater following 44 years of manure application to irrigated and non-irrigated long-term test plots. Sampling of 26 wells over an 18-month period revealed high spatial variability of groundwater nitrate concentrations, ranging from <0.1 mg-N/L to 1350 mg-N/L (mean = 118 mg-N/L). The highest concentrations were associated with the highest manure nitrogen loads, longer durations of manure application, and were generally located beneath irrigated land use. Regression modeling confirmed that cumulative manure loading had the greatest control on the spatial distribution of groundwater nitrate. A significant decreasing temporal trend was observed in selected wells downgradient of plots where manure application ceased more than a decade earlier. Isotopic analysis of 15N-NO3 and 18O-NO3 showed that denitrification occurred at 16 well locations, with evidence for dissolved organic carbon as the electron donor. The groundwater nitrate trends observed in this long-term study demonstrate that historical nutrient and water management practices will affect groundwater quality for many decades to come.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitratos/análise , Esterco/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nitrogênio/análise
3.
J Contam Hydrol ; 182: 104-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26348834

RESUMO

The Abbotsford-Sumas aquifer (ASA) has a history of nitrate contamination from agricultural land use and manure application to soils, yet little is known about its microbial groundwater quality. The goal of this study was to investigate the spatiotemporal distribution of pathogen indicators (Escherichia coli [E. coli] and total coliform [TC]) and nitrate in groundwater, and their potential relation to hydrologic drivers. Sampling of 46 wells over an 11-month period confirmed elevated nitrate concentrations, with more than 50% of samples exceeding 10 mg-N/L. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections along Fishtrap Creek, which tested positive for E. coli in every sampling event. TC was detected frequently in groundwater (70% of samples) across the ASA. Generalized additive mixed models (GAMMs) yielded valuable insights into relationships between TC or nitrate and a range of spatial, temporal, and hydrologic explanatory variables. Increased TC values over the wetter fall and winter period were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, the moderate temporal variability in nitrate concentrations was not significantly related to hydrologic forcings. TC was relatively widespread across the ASA and spatial patterns could not be attributed solely to surface water connectivity. Varying nitrate concentrations across the ASA were significantly related to both well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation (i.e., denitrification). Vulnerability of the ASA to bacteria was clearly linked to hydrologic conditions, and was distinct from nitrate, such that a groundwater management strategy specifically for bacterial contaminants is warranted.


Assuntos
Água Subterrânea/análise , Água Subterrânea/microbiologia , Modelos Teóricos , Nitratos/análise , Agricultura , Colúmbia Britânica , Desnitrificação , Enterobacteriaceae/isolamento & purificação , Monitoramento Ambiental , Escherichia coli/isolamento & purificação , Água Subterrânea/química , Hidrologia/métodos , Esterco , Nitrogênio/análise , Solo , Análise Espaço-Temporal , Washington , Poluentes Químicos da Água/análise , Poços de Água
4.
Water Res ; 44(4): 1235-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939432

RESUMO

Polystyrene latex microspheres are widely used as surrogates for biocolloid transport in porous media; however, relatively few studies directly compare microsphere transport with that of the microorganism it is intended to represent, particularly at the field scale. Here, we compared the transport behaviour of a bacterium (Escherichia coli RS2g; 1.2 microm in diameter) and three different sized microspheres (1.1, 3.9, and 4.8 microm in diameter) within undisturbed agricultural field soil following infiltration under partially saturated conditions. The soil contained significant macroporosity. A tension infiltrometer was used to control the application of a transport solution containing Brilliant Blue FCF dye to two plots. A >2 log reduction in the concentration of all colloids was observed from the soil surface to 5 cm depth in both plots. The concentration of colloids in the soil was generally proportional to the intensity of soil dye staining; however, both the E. coli RS2g bacterium and the 1.1 microm microspheres appeared to be transported deeper than the other colloids and the visible dye along root holes at the bottom of the profile in both plots. The similarities in size and zeta potential of the 1.1 microm microspheres and the E. coli RS2g likely contributed to that outcome. Colloid concentrations in dyed soil by depth were similar between the two plots, despite differences in soil properties and infiltration patterns. The properties of the colloids and macropore density were the most important factors affecting colloid transport. These results suggest that microspheres with size and surface properties similar to the microbe of interest are useful surrogates to trace potential pathways of transport in the subsurface.


Assuntos
Escherichia coli/isolamento & purificação , Microesferas , Microbiologia do Solo , Poluentes do Solo/isolamento & purificação , Agricultura , Coloides , Monitoramento Ambiental , Escherichia coli/química , Cinética , Solo , Poluentes do Solo/química
5.
J Contam Hydrol ; 107(1-2): 45-57, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19435645

RESUMO

Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere concentrations at all depths directly related to the intensity (or concentration) of dye staining. It is concluded that the flow system influenced transport to a much greater degree than differences between dissolved and colloidal species, and hence a dye tracer could serve as a reasonable surrogate for colloid distributions in the vadose zone following individual infiltration events.


Assuntos
Coloides/química , Microesferas , Solo/análise , Movimentos da Água , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA