Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Angew Chem Int Ed Engl ; 62(46): e202307615, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37485623

RESUMO

Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of "nano-architecting" of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal-organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.

2.
Angew Chem Int Ed Engl ; 59(45): 19934-19939, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32720429

RESUMO

Unit-cell-thin zeolitic nanosheets have emerged as fascinating materials for catalysis and separation. The controllability of nanosheet stacking is extremely challenging in the chemistry of two-dimensional zeolitic materials. To date, the organization of zeolitic nanosheets in hydrothermal synthesis has been limited by the lack of tunable control over the guest-host interactions between organic structure-directing agents (OSDAs) and zeolitic nanosheets. A direct synthetic methodology is reported that enables systematic manipulation of the aluminosilicate MWW-type nanosheet stacking. Variable control of guest-host interactions is rationally achieved by synergistically altering the charge density of OSDAs and synthetic silica-to-alumina composition. These finely controlled interactions allow successful preparation of a series of three-dimensional (3D) zeolites, with MWW-layer stacking in wide ranges from variably disorder to fully ordered, leading to tunable catalytic activity in the cracking reaction. These results highlight unprecedented opportunities to modulate zeolitic nanosheets arrangement in 3D zeolites whose structure can be tailored for catalysis and separation.

3.
Phys Chem Chem Phys ; 21(7): 4015-4021, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30714062

RESUMO

Understanding the properties of zeolites for cation exchange is important because the ion-exchange performance largely determines their suitability in applications such as catalysis and adsorptive separation. We synthesized a Zn(ii)-incorporated mordenite-framework aluminosilicate zeolite (Zn,Al-MOR), in which both Zn and Al are substituted in the framework, and studied its ion-exchange behavior for multivalent cations. For comparison, the original aluminosilicate mordenite (Al-MOR) was also synthesized with a composition adjusted to ensure that its charge density was similar to that of Zn,Al-MOR. While the incorporation of Zn(ii) led to a slower kinetic process, the selectivities and the exchange capacities toward multivalent cations (especially divalent cations) were significantly improved. Herein, we discussed the mechanism responsible for improving the ion-exchange performance in the presence of Zn(ii) and found that the incorporation of Zn(ii) led to a significant improvement in the ion-exchange temperature dependence of the MOR, which led to the ability to enhance ion-exchange capacity through temperature control during actual application. It was also revealed that the presence of Zn(ii) significantly improves selectivity and spontaneity toward the exchange of multivalent cations, Ni2+. Moreover, XRD and nitrogen-adsorption/desorption analyses revealed that the structures of the materials are maintained during the ion exchange, which is indicative of superior structural stability and tolerance to ion exchange.

4.
Angew Chem Int Ed Engl ; 58(41): 14529-14533, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31398272

RESUMO

There is broad scientific interest in lamellar zeolitic materials for a large variety of technological applications. The traditional synthetic methods towards two-dimensional (2D) zeolitic precursors have made a great impact in the construction of families of related zeolites; however, the connection between structurally distinct 2D zeolitic precursors is much less investigated in comparison, thereby resulting in a synthetic obstacle that theoretically limits the types of zeolites that can be constructed from each layer. Herein, we report a Ge-recycling strategy for the topotactic conversion between different 2D zeolitic precursors through a three-dimensional (3D) germanosilicate. Specifically, the intermediate germanosilicate can be constructed within 150 min by taking advantage of its structural similarity with the parent lamellar precursor. This process enables the conversion of one 2D zeolite structure into another distinct structure, thus overcoming the synthetic obstacle between two families of zeolitic materials.

5.
Chemistry ; 24(4): 808-812, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29222868

RESUMO

There is growing interest to develop zeolite materials capable of stabilizing divalent cations such as Cu2+ , Fe2+ , and Ni2+ for catalytic applications. Herein the synthesis of a new microporous zincosilicate with CHA zeolite topology is reported for the first time, by particularly focusing on the mixing procedures of the raw materials to prevent the precipitation of zinc oxides/hydroxides and the formation of impurity phases. The obtained zincosilicate CHA products possess remarkably higher ion-exchange ability for catalytically useful, divalent cations, demonstrated here using Ni2+ as an example, compared to that of aluminosilicate and zincoaluminosilicate analogs. It is anticipated that these zincosilicate CHA materials can be an efficient platform for several important catalytic reactions. In addition, the present finding would provide a general guideline for effective substitution of other heteroatoms into the zeolite frameworks.

6.
Chemistry ; 24(37): 9247-9253, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29701311

RESUMO

Synthesis of new zeolites involving organic molecules relies heavily on the trial-and-error approach, because it is difficult to interpret the determining effects of organics on zeolite crystal symmetry. Here, the intrinsic relationships among the space-filling of organics, included volume of channels, and zeolite crystal symmetry, are systematically demonstrated by experimental and computational means. Under controlled conditions, the "dimer" and "monomer" organics of 1-ethyl-3-methylimidazolium selectively direct different, but related, germanosilicates, the ECNU-16 with a new topology and the existing IM-16 with the UOS topology, respectively. The comprehensive computational study reveals that the zeolite phase selectivity is determined by the unique space-filling behavior of the "dimer" and "monomer" organics, which is closely correlated to their rotation freedom, as well as the included volume of host zeolite channels. The elucidation of this crucial space-filling effect from the fundamental viewpoint will provide new guidelines for the rational design and synthesis of new zeolites in future.

7.
Angew Chem Int Ed Engl ; 57(14): 3742-3746, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29405535

RESUMO

The Al location in zeolites can have massive influences on the zeolite properties because it directly correlates with the cationic active sites. Herein, the synthesis of IFR zeolites with controlled Al distribution at different tetrahedral sites (T sites) is reported. The computational calculations suggest that organic structure-directing agents (OSDAs) used for zeolite synthesis can alter the energetically favorable T sites for Al. Zeolite products synthesized under identical conditions but with different OSDAs are found to have altered fractions of Al at different T sites in accordance with the energies derived from the zeolite-OSDA complexes. Our finding thus provides evidence for the ability of OSDAs to direct Al into more energetically favorable T sites, thereby offering rational synthetic guidelines for the selective placement of Al into specific crystallographic sites.

8.
Angew Chem Int Ed Engl ; 56(43): 13366-13371, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28771911

RESUMO

We report the most siliceous FAU-type zeolite, HOU-3, prepared via a one-step organic-free synthesis route. Computational studies indicate that it is thermodynamically feasible to synthesize FAU with SAR=2-7, though kinetic factors seemingly impose a more restricted upper limit for HOU-3 (SAR≈3). Our findings suggest that a slow rate of crystallization and/or low concentration of Na+ ions in HOU-3 growth mixtures facilitate Si incorporation into the framework. Interestingly, Q4 (nAl) Si speciation measured by solid-state NMR can only be modeled with a few combinations of Al positioning at tetrahedral sites in the crystal unit cell, indicating the distribution of Si(-O-Si)4-n (-O-Al)n species is spatially biased as opposed to being random. Achieving higher SAR is desirable for improved zeolite (hydro)thermal stability and enhanced catalytic performance, which we demonstrate in benchmark tests that show HOU-3 is superior to commercial zeolite Y.

9.
J Am Chem Soc ; 138(19): 6184-93, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27097121

RESUMO

The contents and locations of Al in the zeolite frameworks are one of the key factors determining the physicochemical properties of zeolites. Systematic evaluation of the characteristics of zeolites with a wide variety of framework topologies, a wide range of Si/Al ratios, and various locations of Al is of great significance, but very challenging due to the limitation of the realizable ranges of Al contents in zeolites as well as the limited information on the Al locations obtained from the current analytical techniques. Here, we report the systematic analysis of the energetics of aluminosilicate zeolites with 209 existing framework topologies at different Si/Al ratios using molecular mechanics. More than 43 000 initial structures were generated to give comprehensive views of the energetics of zeolites. The results coincide well with the structural knowledge obtained experimentally. It was revealed that the relation between the relative framework energies versus the Al contents varies in accordance with the topologies, suggesting that the relative stability of zeolites depends not only on the topologies, but also on the substituting contents of Al. For particular topologies with the same Al contents, in addition, comparisons between random and specific distributions of Al showed that zeolite with Al at a particular T site is energetically more stable than those with random distributions, suggesting the inherent influences of the Al locations. The contents and locations of Al in zeolites likely have a certain preference that may reflect the range of chemical compositions, the Al distributions, and consequently the physicochemical properties of realizable aluminosilicate zeolites.

10.
Acc Chem Res ; 48(10): 2680-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26356307

RESUMO

Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a "direct air capture" process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.

11.
J Am Chem Soc ; 137(45): 14533-44, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26509741

RESUMO

Organic structure-directing agents (OSDAs) have been widely used for the synthesis of zeolites. In most cases, OSDAs are occluded in zeolites as an isolated cation or molecule geometrically fitted within the zeolite cavities. This is not the case for zeolite beta synthesized by using tetraethylammonium (TEA(+)) cation as an OSDA, in which a cluster/aggregate of ca. six TEA(+) cations is occluded intact in the cavity (i.e., the channel intersection) of zeolite beta. The structure direction of TEA(+) in such a nontypical, clustered mode has remained elusive. Here, zeolite beta was hydrothermally synthesized using TEA(+) in the absence of other alkali metal cations in order to focus on the structure-directing behaviors of TEA(+) alone. The solid products formed throughout the hydrothermal synthesis were analyzed by an array of characterization techniques including argon adsorption-desorption, high-energy X-ray total scattering, Raman and solid-state NMR spectroscopy, and high-resolution transmission electron microscopy. It was revealed that the formation of amorphous TEA(+)-aluminosilicate composites and their structural, chemical, and textural evolution toward the amorphous zeolite beta-like structure during the induction period is vital for the formation of zeolite beta. A comprehensive scheme of the formation of zeolite beta is proposed paying attention to the clustered behavior of TEA(+) as follows: (i) the formation of the TEA(+)-aluminosilicate composites after heating, (ii) the reorganization of aluminosilicates together with the conformational rearrangement of TEA(+), yielding the formation of the amorphous TEA(+)-aluminosilicate composites with the zeolite beta-like structure, (iii) the formation of zeolite beta nuclei by solid-state reorganization of such zeolite beta-like, TEA(+)-aluminosilicate composites, and (iv) the subsequent crystal growth. It is anticipated that these findings can provide a basis for broadening the utilization of OSDAs in the clustered mode of structure direction in more effective ways.

12.
Environ Sci Technol ; 49(22): 13684-91, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477882

RESUMO

Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.


Assuntos
Dióxido de Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química , Adsorção , Aminas/química , Carbamatos/química , Isótopos de Carbono , Dióxido de Silício , Água/química
13.
Angew Chem Int Ed Engl ; 54(19): 5683-7, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25801140

RESUMO

Characteristics of zeolite formation, such as being kinetically slow and thermodynamically metastable, are the main bottlenecks that obstruct a fast zeolite synthesis. We present an ultrafast route, the first of its kind, to synthesize high-silica zeolite SSZ-13 in 10 min, instead of the several days usually required. Fast heating in a tubular reactor helps avoid thermal lag, and the synergistic effect of addition of a SSZ-13 seed, choice of the proper aluminum source, and employment of high temperature prompted the crystallization. Thanks to the ultra-short period of synthesis, we established a continuous-flow preparation of SSZ-13. The fast-synthesized SSZ-13, after copper-ion exchange, exhibits outstanding performance in the ammonia selective catalytic reduction (NH3 -SCR) of nitrogen oxides (NOx ), showing it to be a superior catalyst for NOx removal. Our results indicate that the formation of high-silica zeolites can be extremely fast if bottlenecks are effectively widened.

14.
Chemistry ; 20(15): 4217-21, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24623613

RESUMO

Nanoporous carbon-cobalt-oxide hybrid materials are prepared by a simple, two-step, thermal conversion of a cobalt-based metal-organic framework (zeolitic imidazolate framework-9, ZIF-9). ZIF-9 is carbonized in an inert atmosphere to form nanoporous carbon-metallic-cobalt materials, followed by the subsequent thermal oxidation in air, yielding nanoporous carbon-cobalt-oxide hybrids. The resulting hybrid materials are evaluated as electrocatalysts for the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER) in a KOH electrolyte solution. The hybrid materials exhibit similar catalytic activity in the ORR to the benchmark, commercial, Pt/carbon black catalyst, and show better catalytic activity for the OER than the Pt-based catalyst.

15.
Adv Mater ; 34(7): e2107212, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34637159

RESUMO

Materials science and chemistry have played a central and significant role in advancing society. With the shift toward sustainable living, it is anticipated that the development of functional materials will continue to be vital for sustaining life on our planet. In the recent decades, rapid progress has been made in materials science and chemistry owing to the advances in experimental, analytical, and computational methods, thereby producing several novel and useful materials. However, most problems in material development are highly complex. Here, the best strategy for the development of functional materials via the implementation of three key concepts is discussed: nanotechnology as a game changer, nanoarchitectonics as an integrator, and materials informatics as a super-accelerator. Discussions from conceptual viewpoints and example recent developments, chiefly focused on nanoporous materials, are presented. It is anticipated that coupling these three strategies together will open advanced routes for the swift design and exploratory search of functional materials truly useful for solving real-world problems. These novel strategies will result in the evolution of nanoporous functional materials.

16.
J Am Chem Soc ; 133(35): 13832-5, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21819064

RESUMO

A novel hierarchically porous, hyper-cross-linked siloxane-organic hybrid (PSN-5) has been synthesized by Friedel-Crafts self-condensation of benzyl chloride-terminated double-four-ring cubic siloxane cages as a singular molecular precursor. Simultaneous polymerization of the organic functional groups and destruction of the siloxane cages during synthesis yielded PSN-5, which has an ultrahigh BET surface area (∼2500 m(2) g(-1)) and large pore volume (∼3.3 cm(3) g(-1)) that to our knowledge are the highest values reported for siloxane-based materials. PSN-5 also shows a high H(2) uptake of 1.25 wt % at 77 K and 760 Torr.

17.
Science ; 374(6565): 257-258, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648342

RESUMO

A data-intensive approach scours known organics for synthesizing targeted zeolites.


Assuntos
Zeolitas
18.
ACS Appl Mater Interfaces ; 13(41): 48595-48610, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633180

RESUMO

Formic acid (HCOOH) is an important intermediate in chemical synthesis, pharmaceuticals, the food industry, and leather tanning and is considered to be an effective hydrogen storage molecule. Direct contact with its vapor and its inhalation lead to burns, nerve injury, and dermatosis. Thus, it is critical to establish efficient sensing materials and devices for the rapid detection of HCOOH. In the present study, we introduce a chemical sensor based on a quartz crystal microbalance (QCM) sensor capable of detecting trace amounts of HCOOH. This sensor is composed of colloidal phenyl-terminated carbon nitride (Ph-g-C3N4) quantum nanoflakes prepared using a facile solid-state method involving the supramolecular preorganization technology. In contrast to other synthetic methods of modified carbon nitride materials, this approach requires no hard templates, hazardous chemicals, or hydrothermal treatments. Comprehensive characterization and density functional theory (DFT) calculations revealed that the QCM sensor designed and prepared here exhibits enhanced detection sensitivity and selectivity for volatile HCOOH, which originates from chemical and hydrogen-bonding interactions between HCOOH and the surface of Ph-g-C3N4. According to DFT results, HCOOH is located close to the cavity of the Ph-g-C3N4 unit, with bonding to graphitic carbon and pyridinic nitrogen atoms of the nanoflake. The sensitivity of the Ph-g-C3N4-nanoflake-based QCM sensor was found to be the highest (128.99 Hz ppm-1) of the substances studied, with a limit of detection (LOD) of HCOOH down to a sub-ppm level of 80 ppb. This sensing technology based on phenyl-terminated attached-g-C3N4 nanoflakes establishes a simple, low-cost solution to improve the performance of QCM sensors for the effective discrimination of HCOOH, HCHO, and CH3COOH vapors using smart electronic noses.

19.
Chemistry ; 16(20): 6006-14, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20391584

RESUMO

Sonogashira cross-coupling of bromophenylethenyl-terminated cubic, double four-ring, siloxane cages with di-/triethynyl compounds results in microporous poly(ethynylene aryleneethenylene silsesquioxane) networks, simply termed as polyorganosiloxane networks (PSNs). In comparison with porous organic polymers reported previously, these PSNs show relatively high surface area and comparable thermal stability. Their apparent BET specific surface areas vary in the range of 850-1040 m(2) g(-1) depending on the length and the connectable sites of the ethynyl compounds. Analyses of pore size distribution revealed bimodal micropores with relatively narrow distribution. The degree of cross-linking affects the degree of cleavage of the siloxane bonds, and this suggests that partial cleavage of the siloxane cages is mainly a result of cage distortion. Hydrogen adsorption was performed to evaluate potential of the PSNs as hydrogen storage media. Uptakes of up to 1.19 wt% at 77 K and 760 Torr and initial isosteric heats of adsorption as high as 8.0 kJ mol(-1) were observed. These materials have been obtained by a combination of structural, synthetic organic, and materials chemistry, which can exploited to synthesize porous hybrid materials with specifically designed structures and functions.

20.
Chem Sci ; 11(31): 8214-8223, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094176

RESUMO

Organic structure-directing agents (OSDAs) are often employed for synthesis of zeolites with desired frameworks. A priori prediction of such OSDAs has mainly relied on the interaction energies between OSDAs and zeolite frameworks, without cost considerations. For practical purposes, the cost of OSDAs becomes a critical issue. Therefore, the development of a computational de novo prediction methodology that can speed up the trial-and-error cycle in the search for less expensive OSDAs is desired. This study utilized a nature-inspired ant colony optimization method to predict physicochemically and/or economically preferable OSDAs, while also taking molecular similarity and heuristics of zeolite synthesis into consideration. The prediction results included experimentally known OSDAs, candidates having structures closely related to known OSDAs, and novel ones, suggesting the applicability of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA