Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955620

RESUMO

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Assuntos
DNA/genética , Enciclopédias como Assunto , Genoma Humano/genética , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética , Transcriptoma/genética , Alelos , Linhagem Celular , DNA Intergênico/genética , Elementos Facilitadores Genéticos , Éxons/genética , Perfilação da Expressão Gênica , Genes/genética , Genômica , Humanos , Poliadenilação/genética , Isoformas de Proteínas/genética , RNA/biossíntese , RNA/genética , Edição de RNA/genética , Splicing de RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de RNA
2.
RNA ; 21(11): 1966-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26392588

RESUMO

Extracellular vesicles (EVs) have been proposed as a means to promote intercellular communication. We show that when human primary cells are exposed to cancer cell EVs, rapid cell death of the primary cells is observed, while cancer cells treated with primary or cancer cell EVs do not display this response. The active agents that trigger cell death are 29- to 31-nucleotide (nt) or 22- to 23-nt processed fragments of an 83-nt primary transcript of the human RNY5 gene that are highly likely to be formed within the EVs. Primary cells treated with either cancer cell EVs, deproteinized total RNA from either primary or cancer cell EVs, or synthetic versions of 31- and 23-nt fragments trigger rapid cell death in a dose-dependent manner. The transfer of processed RNY5 fragments through EVs may reflect a novel strategy used by cancer cells toward the establishment of a favorable microenvironment for their proliferation and invasion.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , RNA/metabolismo , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Células K562
3.
Genome Res ; 22(9): 1616-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22955974

RESUMO

Splicing remains an incompletely understood process. Recent findings suggest that chromatin structure participates in its regulation. Here, we analyze the RNA from subcellular fractions obtained through RNA-seq in the cell line K562. We show that in the human genome, splicing occurs predominantly during transcription. We introduce the coSI measure, based on RNA-seq reads mapping to exon junctions and borders, to assess the degree of splicing completion around internal exons. We show that, as expected, splicing is almost fully completed in cytosolic polyA+ RNA. In chromatin-associated RNA (which includes the RNA that is being transcribed), for 5.6% of exons, the removal of the surrounding introns is fully completed, compared with 0.3% of exons for which no intron-removal has occurred. The remaining exons exist as a mixture of spliced and fewer unspliced molecules, with a median coSI of 0.75. Thus, most RNAs undergo splicing while being transcribed: "co-transcriptional splicing." Consistent with co-transcriptional spliceosome assembly and splicing, we have found significant enrichment of spliceosomal snRNAs in chromatin-associated RNA compared with other cellular RNA fractions and other nonspliceosomal snRNAs. CoSI scores decrease along the gene, pointing to a "first transcribed, first spliced" rule, yet more downstream exons carry other characteristics, favoring rapid, co-transcriptional intron removal. Exons with low coSI values, that is, in the process of being spliced, are enriched with chromatin marks, consistent with a role for chromatin in splicing during transcription. For alternative exons and long noncoding RNAs, splicing tends to occur later, and the latter might remain unspliced in some cases.


Assuntos
Genoma Humano , Splicing de RNA , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Cromatina/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Spliceossomos/genética , Spliceossomos/metabolismo , Frações Subcelulares/química
4.
Lung Cancer ; 182: 107292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423059

RESUMO

OBJECTIVES: Non-small cell lung cancer (NSCLC) with brain metastases (BM) is a challenging clinical issue with poor prognosis. No data exist regarding extensive genetic analysis of cerebrospinal fluid (CSF) and its correlation to associated tumor compartments. MATERIALS AND METHODS: We designed a study across multiple NSCLC patients with matched material from four compartments; primary tumor, BM, plasma and CSF. We performed enrichment-based targeted next-generation sequencing analysis of ctDNA and exosomal RNA in CSF and plasma and compared the outcome with the solid tumor compartments. RESULTS: An average of 105 million reads per sample was generated with fractions of mapped reads exceeding 99% in all samples and with a mean coverage above 10,000x. We observed a high degree of overlap in variants between primary lung tumor and BM. Variants specific for the BM/CSF compartment included in-frame deletions in AR, FGF10 and TSC1 and missense mutations in HNF1a, CD79B, BCL2, MYC, TSC2, TET2, NRG1, MSH3, NOTCH3, VHL and EGFR. CONCLUSION: Our approach of combining ctDNA and exosomal RNA analyses in CSF presents a potential surrogate for BM biopsy. The specific variants that were only observed in the CNS compartments could serve as targets for individually tailored therapies in NSCLC patients with BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Biópsia Líquida , Neoplasias Encefálicas/genética
5.
Neurooncol Adv ; 5(1): vdad104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811539

RESUMO

Background: Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods: Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results: Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion: This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.

6.
NPJ Microgravity ; 8(1): 40, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104352

RESUMO

Molecular profiling to characterize the effects of environmental exposures is important from the human health and performance as well as the occupational medicine perspective in space exploration. We have developed a novel exosome-based platform that allows profiling of biological processes in the body from a variety of body fluids. The technology is suitable for diagnostic applications as well as studying the pathophysiology of the Space Associated Neuro-Ocular Syndrome in astronauts and monitoring patients with chronically impaired cerebrospinal fluid drainage or elevated intracranial pressure. In this proof-of-concept, we demonstrate that: (a) exosomes from different biofluids contain a specific population of RNA transcripts; (b) urine collection hardware aboard the ISS is compatible with exosome gene expression technology; (c) cDNA libraries from exosomal RNA can be stored in dry form and at room temperature, representing an interesting option for the creation of longitudinal molecular catalogs that can be stored as a repository for retrospective analysis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32923886

RESUMO

PURPOSE: Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS: We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS: We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION: While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA