Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 31(12): 3033-3056, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591161

RESUMO

Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy in the rosid species Arabidopsis (Arabidopsis thaliana). Here, we present a functional characterization of the seven SEP/AGL6 and four AP1/SQUA genes in the distant asterid species petunia (Petunia × hybrida). Based on the analysis of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for the petunia SEP3 ortholog FLORAL BINDING PROTEIN2 (FBP2). By contrast, the FBP9 subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in determining floral meristem identity together with FBP4, while contributing only moderately to floral organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required for inflorescence meristem identity and act as B-function repressors in the first floral whorl, together with BEN/ROB genes. Overall, these data together with studies in other species suggest major differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies during angiosperm evolution.plantcell;31/12/3033/FX1F1fx1.


Assuntos
Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas Circadianas Period/genética , Petunia/genética , Arabidopsis/metabolismo , Flores/ultraestrutura , Proteínas de Domínio MADS/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Meristema/genética , Meristema/metabolismo , Mutação , Proteínas Circadianas Period/metabolismo , Petunia/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 29(7): 1605-1621, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28646074

RESUMO

The ABC model is widely used as a genetic framework for understanding floral development and evolution. In this model, the A-function is required for the development of sepals and petals and to antagonize the C-function in the outer floral whorls. In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor represents a major A-function protein, but how the A-function is encoded in other species is not well understood. Here, we show that in the asterid species petunia (Petunia hybrida), AP2B/BLIND ENHANCER (BEN) confines the C-function to the inner petunia floral whorls, in parallel with the microRNA BLINDBEN belongs to the TOE-type AP2 gene family, members of which control flowering time in Arabidopsis. In turn, we demonstrate that the petunia AP2-type REPRESSOR OF B-FUNCTION (ROB) genes repress the B-function (but not the C-function) in the first floral whorl, together with BEN We propose a combinatorial model for patterning the B- and C-functions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on the genetic context. Combined with earlier results, our findings suggest that the molecular mechanisms controlling the spatial restriction of the floral organ identity genes are more diverse than the well-conserved B and C floral organ identity functions.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Petunia/fisiologia , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genoma de Planta , Proteínas de Homeodomínio/genética , Mutação , Proteínas Nucleares/genética , Petunia/genética , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 29(7): 1642-1656, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28696222

RESUMO

Arabidopsis thaliana seed development requires the concomitant development of two zygotic compartments, the embryo and the endosperm. Following fertilization, the endosperm expands and the embryo grows invasively through the endosperm, which breaks down. Here, we describe a structure we refer to as the embryo sheath that forms on the surface of the embryo as it starts to elongate. The sheath is deposited outside the embryonic cuticle and incorporates endosperm-derived material rich in extensin-like molecules. Sheath production is dependent upon the activity of ZHOUPI, an endosperm-specific transcription factor necessary for endosperm degradation, embryo growth, embryo-endosperm separation, and normal embryo cuticle formation. We show that the peptide KERBEROS, whose expression is ZHOUPI dependent, is necessary both for the formation of a normal embryo sheath and for embryo-endosperm separation. Finally, we show that the receptor-like kinases GSO1 and GSO2 are required for sheath deposition at the embryo surface but not for production of sheath material in the endosperm. We present a model in which sheath formation depends on the coordinated production of material in the endosperm and signaling within the embryo, highlighting the complex molecular interaction between these two tissues during early seed development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endosperma/fisiologia , Sementes/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endosperma/genética , Epitopos/genética , Epitopos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/crescimento & desenvolvimento , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais/genética
4.
Development ; 143(18): 3300-5, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287798

RESUMO

Seed development in angiosperms demands the tightly coordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis, final seed size is determined by early expansion of the coenocytic endosperm, which then cellularises and subsequently undergoes developmental programmed cell death, breaking down as the embryo grows. Endosperm breakdown requires the endosperm-specific basic helix-loop-helix transcription factor ZHOUPI. However, to date, the mechanism underlying the Arabidopsis endosperm breakdown process has not been elucidated. Here, we provide evidence that ZHOUPI does not induce the developmental programmed cell death of the endosperm directly. Instead ZHOUPI indirectly triggers cell death by regulating the expression of cell wall-modifying enzymes, thus altering the physical properties of the endosperm to condition a mechanical environment permitting the compression of the cellularised endosperm by the developing embryo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endosperma/metabolismo , Sementes/metabolismo , Morte Celular/fisiologia , Estresse Mecânico
5.
Plant J ; 84(3): 574-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26361885

RESUMO

In angiosperm seeds the embryo is embedded within the endosperm, which is in turn enveloped by the seed coat, making inter-compartmental communication essential for coordinated seed growth. In this context the basic helix-loop-helix domain transcription factor AtZHOUPI (AtZOU) fulfils a key role in both the lysis of the transient endosperm and in embryo cuticle formation in Arabidopsis thaliana. In maize (Zea mays), a cereal with a persistent endosperm, a single gene, ZmZOU, falls into the same phylogenetic clade as AtZOU. Its expression is limited to the endosperm where it peaks during the filling stage. In ZmZOU-RNA interference knock-down lines embryo size is slightly reduced and the embryonic suspensor and the adjacent embryo surrounding region show retarded breakdown. Ectopic expression of ZmZOU reduces stomatal number, possibly due to inappropriate protein interactions. ZmZOU forms functional heterodimers with AtICE/AtSCREAM and the closely related maize proteins ZmICEb and ZmICEc, but its interaction is more efficient with the ZmICEa protein, which shows sequence divergence and only has close homologues in other monocotyledonous species. Consistent with the observation that these complexes can trans-activate target gene promoters from Arabidopsis, ZmZOU partially complements the Atzou-4 mutant. However, structural, trans-activation and gene expression data support the hypothesis that ZmZOU and ZmICEa may have coevolved to form a functional complex unique to monocot seeds. This divergence may explain the reduced functionality of ZmZOU in Arabidopsis, and reflect functional specificities which are unique to the monocotyledon lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Mutação , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Multimerização Proteica , Sementes/genética , Zea mays/genética
6.
Curr Biol ; 30(5): 909-915.e4, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155415

RESUMO

Germination sensu stricto in Arabidopsis involves seed-coat and endosperm rupture by the emerging seedling root. Subsequently, the cotyledons emerge rapidly from the extra-embryonic tissues of the seed, allowing autotrophic seedling establishment [1, 2]. Seedling survival depends upon the presence of an intact seedling cuticle that prevents dehydration, which has hitherto been assumed to form the interface between the newly germinated seedling and its environment [3-5]. Here, we show that in Arabidopsis, this is not the case. The primary interface between the emerging seedling and its environment is formed by an extra-cuticular endosperm-derived glycoprotein-rich structure called the sheath, which is maintained as a continuous layer at seedling surfaces during germination and becomes fragmented as cotyledons expand. Mutants lacking an endosperm-specific cysteine-rich peptide (KERBEROS [KRS]) show a complete loss of sheath production [6]. Although krs mutants have no defects in germination sensu stricto, they show delayed cotyledon emergence, a defect not observed in seedlings with defects in cuticle biosynthesis. Biophysical analyses reveal that the surfaces of wild-type cotyledons show minimal adhesion to silica beads in an aqueous environment at cotyledon emergence but that adhesion increases as cotyledons expand. In contrast, krs mutant cotyledons show enhanced adhesion at germination. Mutants with defects in cuticle biosynthesis, but no sheath defects, show a similar adhesion profile to wild-type seedlings at germination. We propose that the sheath reduces the adhesiveness of the cotyledon surface under the humid conditions necessary for seed germination and thus promotes seed-coat shedding and rapid seedling establishment.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cotilédone/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Germinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA