Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Evol ; 83(1): 31-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401772

RESUMO

Coral reef fish present the human observer with an array of bold and contrasting patterns; however, the ability of such fish to perceive these patterns is largely unexamined. To understand this, the visual acuity of these animals - the degree to which they can resolve fine detail - must be ascertained. Behavioural studies are few in number and anatomical analysis has largely focused on estimates of ganglion cell density to predict the visual acuity in coral reef fish. Here, we report visual acuity measures for the triggerfish Rhinecanthus aculeatus. Acuity was first assessed using a series of behavioural paradigms and the figures were then contrasted with those obtained anatomically, based on photoreceptor and ganglion cell counts. Behavioural testing indicated an upper behavioural acuity of 1.75 cycles·degree(-1), which is approximately the same level of acuity as that of the goldfish (Carassiusauratus). Anatomical estimates were then calculated from wholemount analysis of the photoreceptor layer and Nissl staining of cells within the ganglion cell layer. Both of these anatomical measures gave estimates that were substantially larger (7.75 and 3.4 cycles·degree(-1) for the photoreceptor cells and ganglion cells, respectively) than the level of acuity indicated by the behavioural tests. This indicates that in this teleost species spatial resolution is poor compared to humans (30-70 cycles·degree(-1)) and it is also not well indicated by anatomical estimates.


Assuntos
Recifes de Corais , Retina/fisiologia , Tetraodontiformes/fisiologia , Acuidade Visual/fisiologia , Animais , Discriminação Psicológica , Estimulação Luminosa
2.
J Exp Biol ; 214(Pt 24): 4186-92, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22116761

RESUMO

Little is known about the sensory abilities of elasmobranchs (sharks, skates and rays) compared with other fishes. Despite their role as apex predators in most marine and some freshwater habitats, interspecific variations in visual function are especially poorly studied. Of particular interest is whether they possess colour vision and, if so, the role(s) that colour may play in elasmobranch visual ecology. The recent discovery of three spectrally distinct cone types in three different species of ray suggests that at least some elasmobranchs have the potential for functional trichromatic colour vision. However, in order to confirm that these species possess colour vision, behavioural experiments are required. Here, we present evidence for the presence of colour vision in the giant shovelnose ray (Glaucostegus typus) through the use of a series of behavioural experiments based on visual discrimination tasks. Our results show that these rays are capable of discriminating coloured reward stimuli from other coloured (unrewarded) distracter stimuli of variable brightness with a success rate significantly different from chance. This study represents the first behavioural evidence for colour vision in any elasmobranch, using a paradigm that incorporates extensive controls for relative stimulus brightness. The ability to discriminate colours may have a strong selective advantage for animals living in an aquatic ecosystem, such as rays, as a means of filtering out surface-wave-induced flicker.


Assuntos
Elasmobrânquios/fisiologia , Animais , Comportamento Animal , Percepção de Cores , Visão de Cores
3.
Ecol Evol ; 8(9): 4685-4694, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29760908

RESUMO

Since the discovery of red fluorescence in fish, much effort has been invested to elucidate its potential functions, one of them being signaling. This implies that the combination of red fluorescence and reflection should generate a visible contrast against the background. Here, we present in vivo iris radiance measurements of Tripterygion delaisi under natural light conditions at 5 and 20 m depth. We also measured substrate radiance of shaded and exposed foraging sites at those depths. To assess the visual contrast of the red iris against these substrates, we used the receptor noise model for chromatic contrasts and Michelson contrast for achromatic calculations. At 20 m depth, T. delaisi iris radiance generated strong achromatic contrasts against substrate radiance, regardless of exposure, and despite substrate fluorescence. Given that downwelling light above 600 nm is negligible at this depth, we can attribute this effect to iris fluorescence. Contrasts were weaker in 5 m. Yet, the pooled radiance caused by red reflection and fluorescence still exceeded substrate radiance for all substrates under shaded conditions and all but Jania rubens and Padina pavonia under exposed conditions. Due to the negative effects of anesthesia on iris fluorescence, these estimates are conservative. We conclude that the requirements to create visual brightness contrasts are fulfilled for a wide range of conditions in the natural environment of T. delaisi.

4.
R Soc Open Sci ; 4(3): 161009, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405391

RESUMO

The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.

5.
PLoS One ; 10(6): e0131442, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121163

RESUMO

Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Células Eucarióticas/metabolismo , Perciformes/fisiologia , Animais , Biomassa , Herbivoria , Especificidade da Espécie , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA