Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Oncoimmunology ; 11(1): 2029070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154906

RESUMO

Although chimeric antigen receptor (CAR) T cells have emerged as highly effective treatments for patients with hematologic malignancies, similar efficacy has not been achieved in the context of solid tumors. There are several reasons for this disparity including a) fewer solid tumor target antigens, b) heterogenous target expression amongst tumor cells, c) poor trafficking of CAR T cells to the solid tumor and d) an immunosuppressive tumor microenvironment (TME). Oncolytic viruses have the potential to change this paradigm by a) directly lysing tumor cells and releasing tumor neoantigens, b) stimulating the local host innate immune response to release cytokines and recruit additional innate and adaptive immune cells, c) carrying virus-encoded transgenes to "re-program" the TME to a pro-inflammatory environment and d) promoting an adaptive immune response to the neoantigens in this newly permissive TME. Here we show that the Tumor-Specific Immuno-Gene (T-SIGn) virus NG-347 which encodes IFNα, MIP1α and CD80 synergizes with anti-EGFR CAR T cells as well as anti-HER-2 CAR T cells to clear A549 human tumor xenografts and their pulmonary metastases at doses which are subtherapeutic when each is used as a sole treatment. We show that NG-347 changes the TME to a pro-inflammatory environment resulting in the recruitment and activation of both CAR T cells and mouse innate immune cells. We also show that the transgenes encoded by the virus are critical as synergy is lost in their absence.


Assuntos
Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Animais , Antígenos de Neoplasias/genética , Xenoenxertos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Camundongos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
3.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224979

RESUMO

Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity.

4.
J Immunother Cancer ; 7(1): 320, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753017

RESUMO

BACKGROUND: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs. To avoid "on-target off-tumour" toxicities, we have explored localising expression of the T cell engagers to the tumour with enadenotucirev (EnAd), an oncolytic adenovirus in Phase I/II clinical trials. METHOD: A panel of bi- and tri-valent T cell engagers (BiTEs/TriTEs) was constructed, recognising CD3ε on T cells and CD206 or folate receptor ß (FRß) on M2-like macrophages. Initial characterisation of BiTE/TriTE activity and specificity was performed with M1- and M2-polarised monocyte-derived macrophages and autologous lymphocytes from healthy human peripheral blood donors. T cell engagers were inserted into the genome of EnAd, and oncolytic activity and BiTE secretion assessed with DLD-1 tumour cells. Clinically-relevant ex vivo models (whole malignant ascites from cancer patients) were employed to assess the efficacies of the free- and virally-encoded T cell engagers. RESULTS: T cells activated by the CD206- and FRß-targeting BiTEs/TriTEs preferentially killed M2- over M1-polarised autologous macrophages, with EC50 values in the nanomolar range. A TriTE with bivalent CD3ε binding - the first of its kind - demonstrated enhanced potency whilst retaining target cell selectivity, whereas a CD28-containing TriTE elicited non-specific T cell activation. In immunosuppressive malignant ascites, both free and EnAd-encoded T cell engagers triggered endogenous T cell activation and IFN-γ production, leading to increased T cell numbers and depletion of CD11b+CD64+ ascites macrophages. Strikingly, surviving macrophages exhibited a general increase in M1 marker expression, suggesting microenvironmental repolarisation towards a pro-inflammatory state. CONCLUSIONS: This study is the first to achieve selective depletion of specific M2-like macrophage subsets, opening the possibility of eradicating cancer-supporting TAMs whilst sparing those with anti-tumour potential. Targeted TAM depletion with T cell engager-armed EnAd offers a powerful therapeutic approach combining direct cancer cell cytotoxicity with reversal of immune suppression.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Adenoviridae/genética , Biomarcadores , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Ligação Proteica , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Transgenes
5.
Cancer Res ; 78(24): 6852-6865, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30449733

RESUMO

: Effective immunotherapy of stromal-rich tumors requires simultaneous targeting of cancer cells and immunosuppressive elements of the microenvironment. Here, we modified the oncolytic group B adenovirus enadenotucirev to express a stroma-targeted bispecific T-cell engager (BiTE). This BiTE bound fibroblast activation protein on cancer-associated fibroblasts (CAF) and CD3ε on T cells, leading to potent T-cell activation and fibroblast death. Treatment of fresh clinical biopsies, including malignant ascites and solid prostate cancer tissue, with FAP-BiTE-encoding virus induced activation of tumor-infiltrating PD1+ T cells to kill CAFs. In ascites, this led to depletion of CAF-associated immunosuppressive factors, upregulation of proinflammatory cytokines, and increased gene expression of markers of antigen presentation, T-cell function, and trafficking. M2-like ascites macrophages exhibited a proinflammatory repolarization, indicating spectrum-wide alteration of the tumor microenvironment. With this approach, we have actively killed both cancer cells and tumor fibroblasts, reversing CAF-mediated immunosuppression and yielding a potent single-agent therapeutic that is ready for clinical assessment. SIGNIFICANCE: An engineered oncolytic adenovirus that encodes a bispecific antibody combines direct virolysis with endogenous T-cell activation to attack stromal fibroblasts, providing a multimodal treatment strategy within a single therapeutic agent.


Assuntos
Adenoviridae/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Biópsia , Complexo CD3/metabolismo , Técnicas de Cocultura , Terapia Combinada , Citocinas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Terapia de Imunossupressão , Inflamação , Leucócitos Mononucleares/citologia , Ativação Linfocitária , Neoplasias/terapia
6.
J Clin Invest ; 112(11): 1741-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14660750

RESUMO

Notch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined. The aim of the studies reported here was to investigate the effects of signaling through the Notch receptor using a ligand of the Delta-like family. We show that Notch ligation in the mature immune system markedly decreases responses to transplantation antigens. Constitutive expression of Delta-like 1 on alloantigen-bearing cells renders them nonimmunogenic and able to induce specific unresponsiveness to a challenge with the same alloantigen, even in the form of a cardiac allograft. These effects could be reversed by depletion of CD8+ cells at the time of transplantation. Ligation of Notch on splenic CD8+ cells results in a dramatic decrease in IFN-gamma with a concomitant enhancement of IL-10 production, suggesting that Notch signaling can alter the differentiation potential of CD8+ cells. These data implicate Notch signaling in regulation of peripheral immunity and suggest a novel approach for manipulating deleterious immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade/imunologia , Proteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Apresentadoras de Antígenos/fisiologia , Apoptose , Células CHO , Proteínas de Ligação ao Cálcio , Cricetinae , Rejeição de Enxerto/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular , Interferon gama/biossíntese , Interleucina-10/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos , Proteínas/fisiologia , Receptor Notch2 , Proteínas Serrate-Jagged , Transfecção
7.
PLoS One ; 12(5): e0177810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542292

RESUMO

Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev. Enadenotucirev replicates in human tumour cells but not cells from healthy tissues and can be delivered intravenously because it is stable in human blood. Here, the enadenotucirev genome was used to generate plasmids into which synthesised transgene cassettes could be directly cloned in a single step reaction. The platform enabled generation of panels of reporter viruses to identify cloning sites and transgene cassette designs where transgene expression could be linked to the virus life cycle. It was demonstrated using these viruses that encoded transgene proteins could be successfully expressed in tumour cells in vitro and tumours in vivo. The expression of transgenes did not impact either the oncolytic activity or selective properties of the virus. The effectiveness of this approach as a drug delivery platform for complex therapeutics was demonstrated by inserting multiple genes in the virus genome to encode full length anti-VEGF antibodies. Functional antibody could be synthesised and secreted from infected tumour cells without impacting the activity of the virus particle in terms of oncolytic potency, manufacturing yields or selectivity for tumour cells. In vivo, viral particles could be efficaciously delivered intravenously to disseminated orthotopic tumours.


Assuntos
Adenoviridae/genética , Neoplasias/genética , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Transgenes/genética , Adenoviridae/fisiologia , Expressão Gênica , Genes Reporter/genética , Neoplasias/virologia , Vírus Oncolíticos/fisiologia
8.
Oncogene ; 24(45): 6729-36, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16007160

RESUMO

Basic helix-loop-helix (bHLH) transcription factors play a pivotal role in the regulation of tumorigenesis, and also in a wide range of other developmental processes in diverse species from yeast to humans. Here we demonstrate for the first time that Ret finger protein (RFP), a member of the TRIM family of proteins initially identified as a recombined transforming gene from a human lymphoma, is a novel interaction partner for four different bHLH proteins (SCL, E47, MyoD and mASH-1), but does not interact with GATA-1 or PU.1. Interaction with SCL required the B-box and first coiled-coil region of RFP together with the bHLH domain of SCL. RFP was able to repress transcriptional activation by E47, MyoD and mASH-1, but not by members of several other transcription factor families. Transcriptional repression by RFP was trichostatin A sensitive and did not involve an Id-like mechanism or ubiquitination with subsequent degradation of bHLH proteins. Instead, our results suggest that bHLH transcription factors are regulated by a previously undescribed interaction with RFP, which functions to recruit HDAC and/or Polycomb proteins and thus repress target genes of bHLH proteins. These results reveal an unexpected link between the bHLH and TRIM protein families.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular , Imunoprecipitação , Camundongos , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases
9.
Immun Inflamm Dis ; 4(2): 135-147, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27957325

RESUMO

The anti-human immunoglobulin E (IgE) monoclonal antibody, omalizumab (Xolair®, Genentech, South San Fransisco, CA), is effective in the treatment of poorly controlled moderate to severe allergic asthma and chronic idiopathic urticaria. It acts by specifically binding to the constant domain (Cϵ3) of free human IgE in the blood and interstitial fluid. Although efficacious, use of omalizumab is limited due to restrictions on patient weight and pre-existing IgE levels, and frequent dosing (q2-4 weeks). A vaccine inducing anti-IgE antibodies has the potential for similar clinical benefits with less frequent dosing and relatively lower cost of goods. We developed a vaccine containing two IgE peptide-conjugates targeting the Cϵ3 domain of human IgE. As part of preclinical evaluation of the vaccine to optimize formulation and dose prior to initiating clinical studies, we evaluated the vaccine in non-human primates, and demonstrate the induction of anti-peptide antibodies that can bind to conformationally intact human IgE and are capable, at least in some animals, of substantial lowering circulating IgE levels.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Monoclonais Humanizados , Vacinas Conjugadas/imunologia , Animais , Anticorpos Monoclonais , Asma/terapia , Humanos , Omalizumab , Primatas , Urticária/terapia
10.
Curr Opin Mol Ther ; 7(1): 56-61, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15732530

RESUMO

Since its initial description as a neurogenic locus in Drosophila, the Notch pathway has been shown to play a central role in cell fate decisions across species, including vertebrates, guiding the differentiation of multiple cell types. In the immune system, its function was first demonstrated during lymphopoiesis, but in recent years this pathway has been shown to still be active in peripheral T-cells. Therapeutic opportunities that could arise from the manipulation of Notch signaling in immune disorders such as autoimmunity, allergy and in cancer immunotherapy and transplantation are discussed.


Assuntos
Imunoterapia , Proteínas de Membrana/fisiologia , Linfócitos T/fisiologia , Animais , DNA , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/uso terapêutico , Receptores Notch , Linfócitos T/imunologia , Vacinas/imunologia , Vacinas/uso terapêutico
11.
J Biol Chem ; 283(17): 11785-93, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18296446

RESUMO

The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.


Assuntos
Cálcio/metabolismo , Receptor Notch1/fisiologia , Animais , Sítios de Ligação , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Proteica , Receptor Notch1/química , Receptores Notch/metabolismo , Ressonância de Plasmônio de Superfície
12.
J Immunol ; 177(2): 885-95, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16818743

RESUMO

The key interaction in the adaptive immune system's response to pathogenic challenge occurs at the interface between APCs and T cells. Families of costimulatory and coinhibitory molecules function in association with the cytokine microenvironment to orchestrate appropriate T cell activation programs. Recent data have demonstrated that the Notch receptor and its ligands also function at the APC:T interface. In this study, we describe synthetic small interfering RNA (siRNA) sequences targeting the human Notch ligands Delta1, Jagged1 and Jagged2. Transfection of these siRNAs into human primary CD4(+) T cells and monocyte-derived dendritic cells leads to knockdown of endogenous Notch ligand message. Knockdown of any one of these three Notch ligands in dendritic cells enhanced IFN-gamma production from allogeneic CD4(+) T cells in MLR. In contrast, Delta1 knockdown in CD4(+) T cells selectively enhanced production of IFN-gamma, IL-2, and IL-5 in response to polyclonal stimulation, while Jagged1 or Jagged2 knockdown had no effect. Strikingly, blockade of Notch cleavage with a gamma secretase inhibitor failed to affect cytokine production in this system, implying that Delta1 can influence cytokine production via a Notch cleavage-independent mechanism. These data show for the first time that the Notch pathway can be targeted by siRNA, and that its antagonism may be a unique therapeutic opportunity for immune enhancement.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , RNA Interferente Pequeno/genética , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Animais , Células CHO , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Cricetinae , Citocinas/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Proteína Jagged-2 , Ligantes , Teste de Cultura Mista de Linfócitos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Receptores Notch/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transfecção , Regulação para Cima/genética , Regulação para Cima/imunologia
13.
Expert Opin Ther Targets ; 9(2): 395-410, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15934923

RESUMO

Under normal circumstances, the adaptive immune response to either self or harmless antigens is kept under tight control by a combination of deletion mechanisms in the central immune system, and by a system of regulatory cells in the periphery. Together, these control mechanisms enforce a state referred to as immunological tolerance. Breakdown of these mechanisms lead to a variety of immunological disease states involving persistent immune-mediated pathologies. Whereas the processes inducing central tolerance in the immune system are well documented, the mechanisms by which peripheral regulatory cells function are still unclear. Recent publications have reported an unexpected role for the Notch pathway, itself a classical regulator of cell fate, in the development of regulatory T cells. These exciting data demonstrate that Notch signals modulate events downstream of the T cell receptor, diverting T cell differentiation into alternative fates which regulate immune responses in an antigen-specific manner. The Notch pathway is, therefore, uniquely positioned in the developmental pathways leading to regulatory T cells. In this review, the authors discuss the data surrounding the role of Notch in the peripheral immune system, and discuss how this pathway might be manipulated for the treatment of immunological disorders.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doenças do Sistema Imunitário/tratamento farmacológico , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/fisiologia , Receptores Notch/metabolismo , Animais , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Fatores Imunológicos/farmacologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Receptores Notch/genética , Receptores Notch/imunologia
14.
Semin Cell Dev Biol ; 14(2): 127-34, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12651096

RESUMO

The Notch signalling pathway plays a highly-conserved role in regulating the cellular differentiation and proliferation events that characterise pattern formation in the embryo. As cells in the embryo respond to environmental signals, similarly T-cells in the peripheral immune system must monitor their environment for antigens and respond accordingly by entering one of several potential differentiation pathways. Recent studies have identified a role for the Notch pathway in regulating the responses of T-cells in the periphery. In this review, we discuss these findings in the context of the Notch signalling pathway's role as an orchestrator of cellular differentiation, and propose a central role for Notch as a regulator of immune system function.


Assuntos
Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Tolerância Imunológica/imunologia , Ligantes , Proteínas de Membrana/genética , Modelos Biológicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Notch , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA