Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 29(8): 2441-2455, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33895329

RESUMO

Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Retinose Pigmentar/tratamento farmacológico , Animais , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éxons , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Moleculares , Oligonucleotídeos Antissenso/farmacologia , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Mol Ther Nucleic Acids ; 12: 730-740, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30114557

RESUMO

Leber congenital amaurosis type 10 (LCA10) is a severe inherited retinal dystrophy associated with mutations in CEP290. The deep intronic c.2991+1655A>G mutation in CEP290 is the most common mutation in LCA10 individuals and represents an ideal target for oligonucleotide therapeutics. Here, a panel of antisense oligonucleotides was designed to correct the splicing defect associated with the mutation and screened for efficacy and safety. This identified QR-110 as the best-performing molecule. QR-110 restored wild-type CEP290 mRNA and protein expression levels in CEP290 c.2991+1655A>G homozygous and compound heterozygous LCA10 primary fibroblasts. Furthermore, in homozygous three-dimensional iPSC-derived retinal organoids, QR-110 showed a dose-dependent restoration of mRNA and protein function, as measured by percentage and length of photoreceptor cilia, without off-target effects. Localization studies in wild-type mice and rabbits showed that QR-110 readily reached all retinal layers, with an estimated half-life of 58 days. It was well tolerated following intravitreal injection in monkeys. In conclusion, the pharmacodynamic, pharmacokinetic, and safety properties make QR-110 a promising candidate for treating LCA10, and clinical development is currently ongoing.

3.
Melanoma Res ; 24(4): 305-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24892959

RESUMO

A critical first step in the metastatic progression of cutaneous melanoma, invasive growth into the dermal compartment, would ideally be studied in the proper three-dimensional tissue microenvironment. In this study, we compared the growth and behavior of four melanoma cell lines originating from primary and metastatic human cutaneous melanomas (AN, RU, M14, and WK) in in-vitro human skin equivalents (HSEs) generated with four different dermal matrices: human fibroblast-seeded rat tail collagen, human fibroblast-derived matrix (FDM), noncellular human de-epidermized dermis (DED), and a novel fully cellular human DED with an intact pre-existent basement membrane. Melanoma cells showed proliferation in all HSEs, indicating that the microenvironment formed in all HSEs studied here allows the growth of melanoma cells in concert with epidermal keratinocytes for multiple weeks in vitro. Melanoma cells did not affect epidermal proliferation and terminal differentiation. Growth of melanoma cells in the dermal compartment, as a measure of invasive potential, differs markedly between the four types of in-vitro human melanoma models. Notably, the growth of melanoma cells in the dermal matrix was observed in all HSEs cultured with cell lines originating from metastatic melanoma, except for cDED-based HSEs, and the growth of melanoma cells of nonmetastatic origin was observed in the dermal compartment of FDM-based HSEs. Our results show that the type of dermal equivalent and the presence of an intact basement membrane should be taken into consideration when studying melanoma invasion using in-vitro HSEs.


Assuntos
Membrana Basal/patologia , Neoplasias Encefálicas/patologia , Derme/patologia , Melanoma Amelanótico/patologia , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica
4.
J Pharm Sci ; 102(10): 3539-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955373

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections are an increasing problem, and current treatment options are suboptimal. Nasal carriage of MRSA is a major risk factor for infection, but nasal eradication strategies are increasingly considered to be insufficiently effective. In this study, a water-in-oil cream formulation was developed for nasal application with an antimicrobial peptide, P60.4Ac, aimed at the eradication of MRSA carriage. Quality control of the cream included the measurement of the content and release of the peptide by a validated high-performance liquid chromatography method. Stability of the peptide in the formulation was investigated including the evaluation of the effect of stress conditions. Preliminary shelf-life study of the drug formulation demonstrated that the peptide is stable in the formulation at least for 5 months. Microbial-killing assays with MRSA LUH14616 as a target demonstrated the dose-dependent antimicrobial activity of the peptide formulation.


Assuntos
Anti-Infecciosos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nariz/efeitos dos fármacos , Pomadas/química , Peptídeos/química , Infecções Estafilocócicas/tratamento farmacológico , Administração Intranasal/métodos , Química Farmacêutica/métodos , Testes de Sensibilidade Microbiana/métodos , Nariz/microbiologia , Óleos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA