Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Infect Dis ; 221(Suppl 4): S471-S479, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686101

RESUMO

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses that cause severe disease in both animals and humans. There are no approved vaccines or treatments for use in humans; however, therapeutic treatment of both NiV and HeV infection in ferrets and non-human primates with a cross-reactive, neutralizing human monoclonal antibody (mAb), m102.4, targeting the G glycoprotein has been demonstrated. In a previous study, we isolated, characterized, and humanized a cross-reactive, neutralizing anti-F mAb (h5B3.1). The mAb h5B3.1 blocks the required F conformational change needed to facilitate membrane fusion and virus infection, and the epitope recognized by h5B3.1 has been structurally defined; however, the efficacy of h5B3.1 in vivo is unknown. METHODS: The post-infection antiviral activity of h5B3.1 was evaluated in vivo by administration in ferrets after NiV and HeV virus challenge. RESULTS: All subjects that received h5B3.1 from 1 to several days after infection with a high-dose, oral-nasal virus challenge were protected from disease, whereas all controls died. CONCLUSIONS: This is the first successful post-exposure antibody therapy for NiV and HeV using a humanized cross-reactive mAb targeting the F glycoprotein, and the findings suggest that a combination therapy targeting both F and G should be evaluated as a therapy for NiV/HeV infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Vírus Hendra , Infecções por Henipavirus/terapia , Vírus Nipah , Proteínas Virais de Fusão/imunologia , Animais , Reações Cruzadas , Furões , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos
2.
PLoS Pathog ; 11(12): e1005322, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646856

RESUMO

Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein.


Assuntos
Infecções por Henipavirus/metabolismo , Vírus Nipah/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Vírus Nipah/metabolismo , Conformação Proteica , Proteínas do Envelope Viral/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(36): 14634-9, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959867

RESUMO

Eph receptor tyrosine kinases and their ephrin ligands mediate cell signaling during normal and oncogenic development. Eph signaling is initiated in a multistep process leading to the assembly of higher-order Eph/ephrin clusters that set off bidirectional signaling in interacting cells. Eph and ephrins are divided in two subclasses based on their abilities to bind and activate each other and on sequence conservation. EphA4 is an exception to the general rule because it can be activated by both A- and B-class ephrin ligands. Here we present high-resolution structures of the complete EphA4 ectodomain and its complexes with ephrin-A5. The structures reveal how ligand binding promotes conformational changes in the EphA4 ligand-binding domain allowing the formation of signaling clusters at the sites of cell-cell contact. In addition, the structural data, combined with structure-based mutagenesis, reveal a previously undescribed receptor-receptor interaction between the EphA4 ligand-binding and membrane-proximal fibronectin domains, which is functionally important for efficient receptor activation.


Assuntos
Efrina-A5/química , Estrutura Terciária de Proteína , Receptor EphA4/química , Transdução de Sinais , Sítios de Ligação/genética , Western Blotting , Cristalografia por Raios X , Ativação Enzimática , Efrina-A5/genética , Efrina-A5/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptor EphA4/genética , Receptor EphA4/metabolismo
4.
J Virol ; 88(9): 4624-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522928

RESUMO

UNLABELLED: Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. IMPORTANCE: A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.


Assuntos
Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Vírus Hendra/genética , Infecções por Henipavirus/patologia , Oligodesoxirribonucleotídeos/administração & dosagem , Análise de Sobrevida , Vacinação/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
5.
PLoS Pathog ; 9(10): e1003684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130486

RESUMO

The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus Hendra/química , Proteínas Virais de Fusão/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Reações Cruzadas , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/imunologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
6.
J Virol ; 86(21): 11457-71, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915804

RESUMO

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are paramyxoviruses discovered in the mid- to late 1990s that possess a broad host tropism and are known to cause severe and often fatal disease in both humans and animals. HeV and NiV infect cells by a pH-independent membrane fusion mechanism facilitated by their attachment (G) and fusion (F) glycoproteins. Here, several soluble forms of henipavirus F (sF) were engineered and characterized. Recombinant sF was produced by deleting the transmembrane (TM) and cytoplasmic tail (CT) domains and appending a glycosylphosphatidylinositol (GPI) anchor signal sequence followed by GPI-phospholipase D digestion, appending a trimeric coiled-coil (GCNt) domain (sF(GCNt)), or deleting the TM, CT, and fusion peptide domain. These sF glycoproteins were produced as F(0) precursors, and all were apparent stable trimers recognized by NiV-specific antisera. Surprisingly, however, only the GCNt-appended constructs (sF(GCNt)) could elicit cross-reactive henipavirus-neutralizing antibody in mice. In addition, sF(GCNt) constructs could be triggered in vitro by protease cleavage and heat to transition from an apparent prefusion to postfusion conformation, transitioning through an intermediate that could be captured by a peptide corresponding to the C-terminal heptad repeat domain of F. The pre- and postfusion structures of sF(GCNt) and non-GCNt-appended sF could be revealed by electron microscopy and were distinguishable by F-specific monoclonal antibodies. These data suggest that only certain sF constructs could serve as potential subunit vaccine immunogens against henipaviruses and also establish important tools for further structural, functional, and diagnostic studies on these important emerging viruses.


Assuntos
Henipavirus/imunologia , Henipavirus/ultraestrutura , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Células HeLa , Henipavirus/genética , Humanos , Camundongos , Microscopia Eletrônica , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
7.
Methods Mol Biol ; 2682: 33-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610572

RESUMO

Henipaviruses possess two envelope glycoproteins, the attachment (G) and the fusion (F) proteins that mediate cellular entry and are the major targets of virus-neutralizing antibody responses. Recombinant expression technologies have been used to produce soluble G and F proteins (sG and sF) that retain native-like oligomeric conformations and epitopes, which are advantageous for the development and characterization of vaccines and antiviral antibody therapeutics. In addition to Hendra virus and Nipah virus tetrameric sG and trimeric sF production, we also describe the expression and purification of Cedar virus tetrameric sG and Ghana virus trimeric sF glycoproteins. These henipavirus glycoproteins were also used as immunizing antigens to generate monoclonal antibodies, and binding was demonstrated with a pan-henipavirus multiplex microsphere immunoassay.


Assuntos
Henipavirus , Henipavirus/genética , Anticorpos Bloqueadores , Anticorpos Monoclonais
8.
Glycobiology ; 22(4): 572-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22171062

RESUMO

Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.


Assuntos
Vírus Hendra , Polissacarídeos/química , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Configuração de Carboidratos , Sequência de Carboidratos , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Glicosilação , Células HEK293 , Células HeLa , Humanos , Lectinas/química , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Receptor EphB2/química , Proteínas Recombinantes/química , Análise de Sequência de Proteína
9.
PLoS Pathog ; 5(10): e1000642, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19888339

RESUMO

Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/patogenicidade , Doença Aguda , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Furões , Glicoproteínas/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Humanos , Imuno-Histoquímica , Vírus Nipah/imunologia , RNA Viral/metabolismo , Distribuição Tecidual , Proteínas do Envelope Viral/imunologia , Carga Viral
10.
Proc Natl Acad Sci U S A ; 105(29): 9953-8, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18632560

RESUMO

Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G beta-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design.


Assuntos
Efrina-B3/química , Vírus Nipah/química , Proteínas do Envelope Viral/química , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Fusão de Membrana/fisiologia , Modelos Moleculares , Complexos Multiproteicos , Vírus Nipah/patogenicidade , Vírus Nipah/fisiologia , Conformação Proteica , Receptores Virais/química , Proteínas do Envelope Viral/fisiologia , Virulência/fisiologia
11.
Nat Struct Mol Biol ; 28(5): 426-434, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33927387

RESUMO

Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses (HNVs) causing respiratory illness and severe encephalitis in humans, with fatality rates of 50-100%. There are no licensed therapeutics or vaccines to protect humans. HeV and NiV use a receptor-binding glycoprotein (G) and a fusion glycoprotein (F) to enter host cells. HNV F and G are the main targets of the humoral immune response, and the presence of neutralizing antibodies is a correlate of protection against NiV and HeV in experimentally infected animals. We describe here two cross-reactive F-specific antibodies, 1F5 and 12B2, that neutralize NiV and HeV through inhibition of membrane fusion. Cryo-electron microscopy structures reveal that 1F5 and 12B2 recognize distinct prefusion-specific, conserved quaternary epitopes and lock F in its prefusion conformation. We provide proof-of-concept for using antibody cocktails for neutralizing NiV and HeV and define a roadmap for developing effective countermeasures against these highly pathogenic viruses.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Vírus Hendra/imunologia , Vírus Nipah/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Células CHO , Cricetulus , Reações Cruzadas , Células HEK293 , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Internalização do Vírus
12.
Methods Mol Biol ; 525: 31-58, xiii, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19252850

RESUMO

Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) that are able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization, and in the eventual development of specific entry inhibitors, vaccines, and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins, and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify, and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies.


Assuntos
Anticorpos/uso terapêutico , Glicoproteínas/biossíntese , Biologia Molecular/métodos , Proteínas Recombinantes/biossíntese , Proteínas Virais/biossíntese , Animais , Linhagem Celular , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos , Peso Molecular , Solubilidade , Ultracentrifugação , Vaccinia virus
13.
Nat Struct Mol Biol ; 26(10): 980-987, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570878

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are zoonotic henipaviruses (HNVs) responsible for outbreaks of encephalitis and respiratory illness with fatality rates of 50-100%. No vaccines or licensed therapeutics currently exist to protect humans against NiV or HeV. HNVs enter host cells by fusing the viral and cellular membranes via the concerted action of the attachment (G) and fusion (F) glycoproteins, the main targets of the humoral immune response. Here, we describe the isolation and humanization of a potent monoclonal antibody cross-neutralizing NiV and HeV. Cryo-electron microscopy, triggering and fusion studies show the antibody binds to a prefusion-specific quaternary epitope, conserved in NiV F and HeV F glycoproteins, and prevents membrane fusion and viral entry. This work supports the importance of the HNV prefusion F conformation for eliciting a robust immune response and paves the way for using this antibody for prophylaxis and post-exposure therapy with NiV- and HeV-infected individuals.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Vírus Hendra/efeitos dos fármacos , Infecções por Henipavirus/tratamento farmacológico , Vírus Nipah/efeitos dos fármacos , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Células HEK293 , Vírus Hendra/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/virologia , Humanos , Modelos Moleculares , Vírus Nipah/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
14.
Sci Rep ; 6: 30916, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484128

RESUMO

Nipah virus (NiV) is a paramyxovirus that causes severe disease in humans and animals. There are two distinct strains of NiV, Malaysia (NiVM) and Bangladesh (NiVB). Differences in transmission patterns and mortality rates suggest that NiVB may be more pathogenic than NiVM. To investigate pathogenic differences between strains, 4 African green monkeys (AGM) were exposed to NiVM and 4 AGMs were exposed to NiVB. While NiVB was uniformly lethal, only 50% of NiVM-infected animals succumbed to infection. Histopathology of lungs and spleens from NiVB-infected AGMs was significantly more severe than NiVM-infected animals. Importantly, a second study utilizing 11 AGMs showed that the therapeutic window for human monoclonal antibody m102.4, previously shown to rescue AGMs from NiVM infection, was much shorter in NiVB-infected AGMs. Together, these data show that NiVB is more pathogenic in AGMs under identical experimental conditions and suggests that postexposure treatments may need to be NiV strain specific for optimal efficacy.


Assuntos
Infecções por Henipavirus/veterinária , Vírus Nipah/classificação , Vírus Nipah/patogenicidade , Animais , Anticorpos Monoclonais/uso terapêutico , Bangladesh , Chlorocebus aethiops , Feminino , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Malásia , Masculino
15.
Microbes Infect ; 4(2): 145-51, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11880045

RESUMO

In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.


Assuntos
Quirópteros/virologia , Paramyxovirinae/isolamento & purificação , Animais , Anticorpos Antivirais/imunologia , Quirópteros/sangue , Quirópteros/imunologia , Quirópteros/urina , Chlorocebus aethiops , Efeito Citopatogênico Viral , Reservatórios de Doenças , Frutas/virologia , Malásia , Infecções por Paramyxoviridae/sangue , Infecções por Paramyxoviridae/urina , Infecções por Paramyxoviridae/virologia , Paramyxovirinae/genética , Paramyxovirinae/imunologia , Células Vero
16.
Sci Transl Med ; 6(242): 242ra82, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24964990

RESUMO

Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe and often fatal disease in pigs and humans. There are currently no vaccines or treatments approved for human use. Studies in small-animal models of NiV infection suggest that antibody therapy may be a promising treatment. However, most studies have assessed treatment at times shortly after virus exposure before animals show signs of disease. We assessed the efficacy of a fully human monoclonal antibody, m102.4, at several time points after virus exposure including at the onset of clinical illness in a uniformly lethal nonhuman primate model of NiV disease. Sixteen African green monkeys (AGMs) were challenged intratracheally with a lethal dose of NiV, and 12 animals were infused twice with m102.4 (15 mg/kg) beginning at either 1, 3, or 5 days after virus challenge and again about 2 days later. The presence of viral RNA, infectious virus, and/or NiV-specific immune responses demonstrated that all subjects were infected after challenge. All 12 AGMs that received m102.4 survived infection, whereas the untreated control subjects succumbed to disease between days 8 and 10 after infection. AGMs in the day 5 treatment group exhibited clinical signs of disease, but all animals recovered by day 16. These results represent the successful therapeutic in vivo efficacy by an investigational drug against NiV in a nonhuman primate and highlight the potential impact that a monoclonal antibody can have on a highly pathogenic zoonotic human disease.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops/imunologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/terapia , Vírus Nipah/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos , Imuno-Histoquímica , Testes de Neutralização , Resultado do Tratamento , Carga Viral
17.
PLoS One ; 7(11): e48742, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144952

RESUMO

Hendra virus and Nipah virus, comprising the genus Henipavirus, are recently emerged, highly pathogenic and often lethal zoonotic agents against which there are no approved therapeutics. Two surface glycoproteins, the attachment (G) and fusion (F), mediate host cell entry. The crystal structures of the Hendra G glycoprotein alone and in complex with the ephrin-B2 receptor reveal that henipavirus uses Tryptophan 122 on ephrin-B2/B3 as a "latch" to facilitate the G-receptor association. Structural-based mutagenesis of residues in the Hendra G glycoprotein at the receptor binding interface document their importance for viral attachments and entry, and suggest that the stability of the Hendra-G-ephrin attachment complex does not strongly correlate with the efficiency of viral entry. In addition, our data indicates that conformational rearrangements of the G glycoprotein head domain upon receptor binding may be the trigger leading to the activation of the viral F fusion glycoprotein during virus infection.


Assuntos
Efrina-B2/química , Glicoproteínas/química , Vírus Hendra/patogenicidade , Proteínas Virais/química , Cristalografia por Raios X , Efrina-B2/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Vírus Hendra/genética , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Receptores Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ligação Viral , Internalização do Vírus
18.
Sci Transl Med ; 4(146): 146ra107, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875827

RESUMO

In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.


Assuntos
Antígenos Virais/imunologia , Chlorocebus aethiops/imunologia , Chlorocebus aethiops/virologia , Glicoproteínas/imunologia , Vírus Hendra/imunologia , Vírus Nipah/imunologia , Animais , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/patogenicidade
19.
Vaccine ; 29(34): 5623-30, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21689706

RESUMO

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 µg, 20 µg or 4 µg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID50 of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 µg groups, while genome was detected in the nasal washes only of one animal in the 4 µg group. Together, our findings indicate that 100 µg or 20 µg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible.


Assuntos
Vírus Hendra/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Furões/imunologia , Furões/virologia , Glicoproteínas/imunologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/imunologia , Eliminação de Partículas Virais/imunologia
20.
Sci Transl Med ; 3(105): 105ra103, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22013123

RESUMO

Hendra virus (HeV) is a recently emerged zoonotic paramyxovirus that can cause a severe and often fatal disease in horses and humans. HeV is categorized as a biosafety level 4 agent, which has made the development of animal models and testing of potential therapeutics and vaccines challenging. Infection of African green monkeys (AGMs) with HeV was recently demonstrated, and disease mirrored fatal HeV infection in humans, manifesting as a multisystemic vasculitis with widespread virus replication in vascular tissues and severe pathologic manifestations in the lung, spleen, and brain. Here, we demonstrate that m102.4, a potent HeV-neutralizing human monoclonal antibody (hmAb), can protect AGMs from disease after infection with HeV. Fourteen AGMs were challenged intratracheally with a lethal dose of HeV, and 12 subjects were infused twice with a 100-mg dose of m102.4 beginning at either 10, 24, or 72 hours after infection and again about 48 hours later. The presence of viral RNA, infectious virus, and HeV-specific immune responses demonstrated that all subjects were infected after challenge. All 12 AGMs that received m102.4 survived infection, whereas the untreated control subjects succumbed to disease on day 8 after infection. Animals in the 72-hour treatment group exhibited neurological signs of disease, but all animals started to recover by day 16 after infection. These results represent successful post-exposure in vivo efficacy by an investigational drug against HeV and highlight the potential impact a hmAb can have on human disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Vírus Hendra/patogenicidade , Infecções por Henipavirus/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacocinética , Chlorocebus aethiops , Infecções por Henipavirus/prevenção & controle , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA