Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 615(7952): 517-525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859545

RESUMO

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Assuntos
Anoikis , Carcinogênese , Extensões da Superfície Celular , Sobrevivência Celular , Melanoma , Transdução de Sinais , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Septinas/metabolismo , Extensões da Superfície Celular/química , Extensões da Superfície Celular/metabolismo , Carcinogênese/genética , Adesão Celular , MAP Quinases Reguladas por Sinal Extracelular , Fibroblastos , Mutação , Forma Celular , Imageamento Tridimensional , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Nat Methods ; 19(11): 1419-1426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280718

RESUMO

Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.


Assuntos
Imageamento Tridimensional , Iluminação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
3.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148682

RESUMO

The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated ß-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of ß-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of ß-catenin. This article has an associated First Person interview with the first authors of the paper.


Assuntos
Neoplasias do Colo , Poluentes Ambientais , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Cinurenina , Triptofano , Actinas/metabolismo , Neoplasias do Colo/genética , RNA
4.
Nat Methods ; 18(7): 829-834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183831

RESUMO

We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Animais , Colo/citologia , Embrião não Mamífero/citologia , Feminino , Coração/diagnóstico por imagem , Coração/embriologia , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Ratos Sprague-Dawley , Esferoides Celulares/patologia , Peixe-Zebra/embriologia
5.
BMC Pulm Med ; 23(1): 67, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805703

RESUMO

BACKGROUND: Heart failure with reduced ejection fraction (HFrEF) can coexist with chronic obstructive pulmonary disease (COPD), which complicates the clinical situation and worsens quality of life. The study used standard diagnostic criteria for detecting COPD in hospitalized HFrEF patients and to survey the influence of other comorbidities and medications on the long-term outcomes of HFrEF + COPD patients. METHODS: We retrospectively recruited patients hospitalized due to HFrEF in a tertiary medical center and examined and followed up clinical outcomes, including length of hospital stay, mortality, and readmission episodes, for a 5-year period. Risk factors for mortality were analyzed using multivariate analysis. RESULTS: Of the 118 hospitalized HFrEF study participants, 68 had concurrent COPD whereas 50 did not. There was a significant increase in the male predominance, smoking history, higher hemoglobin level and increased length of hospital stay in the HF + COPD group than in the HF-only group. Lower left ventricular ejection fraction was found in the HF and COPD comorbidity group. In multivariate analysis, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB) use independently associated with a beneficial effect on survival in HF patients with COPD. Oral corticosteroid uses and stroke as a comorbidity were independently associated with a shorter time to the first readmission episode. CONCLUSION: In HFrEF patients, COPD was associated with a prolonged length of hospital stay. ACEI/ARB use might relate to a beneficial effect on survival in HF patients with COPD. The use of maintenance oral corticosteroid in patients with both HF and COPD should be crucially evaluated to determine the clinical benefit and disadvantages.


Assuntos
Insuficiência Cardíaca , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Feminino , Insuficiência Cardíaca/epidemiologia , Tempo de Internação , Volume Sistólico , Função Ventricular Esquerda , Antagonistas de Receptores de Angiotensina/uso terapêutico , Qualidade de Vida , Estudos Retrospectivos , Inibidores da Enzima Conversora de Angiotensina , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia
6.
Nat Methods ; 16(3): 235-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804550

RESUMO

We introduce field synthesis, a theorem and method that can be used to synthesize any scanned or dithered light sheet, including those used in lattice light-sheet microscopy (LLSM), from an incoherent superposition of one-dimensional intensity distributions. Compared to LLSM, this user-friendly and modular approach offers a simplified optical design, higher light throughput and simultaneous multicolor illumination. Further, field synthesis achieves lower rates of photobleaching than light sheets generated by lateral beam scanning.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular , Humanos , Microscopia de Fluorescência/instrumentação , Fotodegradação
7.
Nat Methods ; 16(11): 1109-1113, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31673159

RESUMO

We present cleared-tissue axially swept light-sheet microscopy (ctASLM), which enables isotropic, subcellular resolution imaging with high optical sectioning capability and a large field of view over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and non-aqueous chemically cleared tissue preparations. Depending on the optical configuration, ctASLM provides up to 260 nm of axial resolution, a three to tenfold improvement over confocal and other reported cleared-tissue light-sheet microscopes. We imaged millimeter-scale cleared tissues with subcellular three-dimensional resolution, which enabled automated detection of multicellular tissue architectures, individual cells, synaptic spines and rare cell-cell interactions.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Camundongos , Peixe-Zebra
8.
Opt Express ; 28(18): 27052-27077, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906967

RESUMO

The axial resolving power of a light-sheet microscope is determined by the thickness of the illumination beam and the numerical aperture of its detection optics. Bessel-beam based optical lattices have generated significant interest owing to their reportedly narrow beam waist and propagation-invariant characteristics. Yet, despite their significant use in lattice light-sheet microscopy and recent incorporation into commercialized systems, there are very few quantitative reports on their physical properties and how they compare to standard Gaussian illumination beams. Here, we measure the beam properties in the transmission of dithered square lattices, which is the most commonly used variant of lattice light-sheet microscopy, and Gaussian-based light-sheets. After a systematic analysis, we find that square lattices are very similar to Gaussian-based light-sheets in terms of thickness, confocal parameter, propagation length and overall imaging performance.

9.
Proc Natl Acad Sci U S A ; 114(19): 4869-4874, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438995

RESUMO

Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.


Assuntos
Retículo Endoplasmático , Saccharomyces cerevisiae/citologia , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
10.
BMC Cancer ; 19(1): 502, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138163

RESUMO

BACKGROUND: Every biological experiment requires a choice of throughput balanced against physiological relevance. Most primary drug screens neglect critical parameters such as microenvironmental conditions, cell-cell heterogeneity, and specific readouts of cell fate for the sake of throughput. METHODS: Here we describe a methodology to quantify proliferation and viability of single cells in 3D culture conditions by leveraging automated microscopy and image analysis to facilitate reliable and high-throughput measurements. We detail experimental conditions that can be adjusted to increase either throughput or robustness of the assay, and we provide a stand alone image analysis program for users who wish to implement this 3D drug screening assay in high throughput. RESULTS: We demonstrate this approach by evaluating a combination of RAF and MEK inhibitors on melanoma cells, showing that cells cultured in 3D collagen-based matrices are more sensitive than cells grown in 2D culture, and that cell proliferation is much more sensitive than cell viability. We also find that cells grown in 3D cultured spheroids exhibit equivalent sensitivity to single cells grown in 3D collagen, suggesting that for the case of melanoma, a 3D single cell model may be equally effective for drug identification as 3D spheroids models. The single cell resolution of this approach enables stratification of heterogeneous populations of cells into differentially responsive subtypes upon drug treatment, which we demonstrate by determining the effect of RAK/MEK inhibition on melanoma cells co-cultured with fibroblasts. Furthermore, we show that spheroids grown from single cells exhibit dramatic heterogeneity to drug response, suggesting that heritable drug resistance can arise stochastically in single cells but be retained by subsequent generations. CONCLUSION: In summary, image-based analysis renders cell fate detection robust, sensitive, and high-throughput, enabling cell fate evaluation of single cells in more complex microenvironmental conditions.


Assuntos
Fibroblastos/citologia , Processamento de Imagem Assistida por Computador/métodos , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Esferoides Celulares/citologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Análise de Célula Única , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Microambiente Tumoral , Quinases raf/antagonistas & inibidores
11.
Opt Express ; 25(18): 21652-21672, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041461

RESUMO

Structured illumination microscopy (SIM) was recently adapted to coherent imaging, named structured oblique-illumination microscopy (SOIM), to improve the contrast and resolution of a light-scattering image. Herein, we present high-resolution laterally isotropic SOIM imaging with 2D hexagonal illuminations. The SOIM is implemented in a SIM fluorescence system based on a spatial-light modulator (SLM). We design an SLM pattern to generate diffraction beams at 0° and ± 60.3° simultaneously to form a 2D hexagonal illumination, and undertake calculations to obtain optimal SLM shifts at 19 phases to yield a reconstructed image correctly. Beams of linear and circular polarizations are used to show the effect of polarization on the resolution improvement. We derive the distributions of the electric field of the resultant hexagonal patterns and work out the formulations of the corresponding coherent-scattering imaging for image reconstruction. The reconstructed images of gold nanoparticles (100 nm) confirm the two-fold improvement of resolution and reveal the effect of polarization on resolving adjacent nanoparticles. To demonstrate biological applications, we present the cellular structures of a label-free fixed HeLa cell with improved contrast and resolution. This work enables one to perform high-resolution dual-mode - fluorescence and light-scattering - imaging in a system, and is expected to broaden the applications of SOIM.

12.
Cell Tissue Res ; 360(1): 129-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25743693

RESUMO

In light sheet-based fluorescence microscopy (LSFM), only the focal plane is illuminated by a laser light sheet. Hence, only the fluorophores within a thin volume of the specimen are excited. This reduces photo-bleaching and photo-toxic effects by several orders of magnitude compared with any other form of microscopy. Therefore, LSFM (aka single/selective-plane illumination microscopy [SPIM] or digitally scanned light sheet microscopy [DSLM]) is the technique of choice for the three-dimensional imaging of live or fixed and of small or large three-dimensional specimens. The parallel recording of millions of pixels with modern cameras provides an extremely fast acquisition speed. Recent developments address the penetration depth, the resolution and the recording speed of LSFM. The impact of LSFM on research areas such as three-dimensional cell cultures, neurosciences, plant biology and developmental biology is increasing at a rapid pace. The development of high-throughput LSFM is the next leap forward, allowing the application of LSFM in toxicology and drug discovery screening.


Assuntos
Células/citologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Especificidade de Órgãos , Animais , Disciplinas das Ciências Biológicas , Técnicas de Cultura de Células , Transferência Ressonante de Energia de Fluorescência , Humanos
13.
Nat Commun ; 15(1): 2755, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553438

RESUMO

Projection imaging accelerates volumetric interrogation in fluorescence microscopy, but for multi-cellular samples, the resulting images may lack contrast, as many structures and haze are summed up. Here, we demonstrate rapid projective light-sheet imaging with parameter selection (props) of imaging depth, position and viewing angle. This allows us to selectively image different sub-volumes of a sample, rapidly switch between them and exclude background fluorescence. Here we demonstrate the power of props by functional imaging within distinct regions of the zebrafish brain, monitoring calcium firing inside muscle cells of moving Drosophila larvae, super-resolution imaging of selected cell layers, and by optically unwrapping the curved surface of a Drosophila embryo. We anticipate that props will accelerate volumetric interrogation, ranging from subcellular to mesoscopic scales.


Assuntos
Drosophila , Peixe-Zebra , Animais , Microscopia de Fluorescência/métodos , Encéfalo/ultraestrutura , Larva
14.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766074

RESUMO

Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities. This has been driven by the ease of scaling up image acquisition, annotation and computation. However 3D cell segmentation, which requires dense annotation of 2D slices still poses significant challenges. Labelling every cell in every 2D slice is prohibitive. Moreover it is ambiguous, necessitating cross-referencing with other orthoviews. Lastly, there is limited ability to unambiguously record and visualize 1000's of annotated cells. Here we develop a theory and toolbox, u-Segment3D for 2D-to-3D segmentation, compatible with any 2D segmentation method. Given optimal 2D segmentations, u-Segment3D generates the optimal 3D segmentation without data training, as demonstrated on 11 real life datasets, >70,000 cells, spanning single cells, cell aggregates and tissue.

15.
Opt Express ; 21(20): 23963-77, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24104307

RESUMO

Three-dimensional structured illumination microscopy (3D-SIM) is a wide-field technique that can provide doubled resolution and improved image contrast. In this work, we demonstrate a simple approach to 3D-SIM - using three-beam interference with circular polarization to generate the pattern of structured illumination, so that the modulation contrast is routinely maintained at all orientations without a complicated polarization rotator or mechanical motion. We derive the resultant intensity distribution of the interference pattern to confirm the modulation contrast independent of orientation, and compare the result with those using interfering beams of linear polarization. To evaluate the influence of the modulation contrast on imaging, we compare the simulated SIM images of 100-nm beads. Experimental results are presented to confirm the simulations. Our approach requires merely a λ/4-wave plate to alter the interfering beams from linear to circular polarization. This simplicity together with the use of a spatial light modulator to control the interference pattern facilitates the implementation of a 3D-SIM system and should broaden its application.

16.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609312

RESUMO

Structured illumination microscopy (SIM) can double the spatial resolution of a fluorescence microscope and video rate live cell imaging in a two-dimensional format has been demonstrated. However, rapid implementations of 2D SIM typically only cover a narrow slice of the sample immediately at the coverslip, with most of the cellular volume out of reach. Here we implement oblique plane structured illumination microscopy (OPSIM) in a projection format to rapidly image an entire cell in a 2D SIM framework. As no mechanical scanning of the sample or objective is involved, this technique has the potential for rapid projection imaging with doubled resolution. We characterize the spatial resolution with fluorescent nanospheres, compare projection and 3D imaging using OPSIM and image mitochondria and ER dynamics across an entire cell at up to 2.7 Hz. To our knowledge, this represents the fastest whole cell SIM imaging to date.

17.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609162

RESUMO

Understanding the intricate interplay and inter-connectivity of biological processes across an entire organism is important in various fields of biology, including cardiovascular research, neuroscience, and developmental biology. Here, we present a mesoscopic oblique plane microscope (OPM) that enables whole organism imaging with high speed and subcellular resolution. A microprism underneath the sample enhances the axial resolution and optical sectioning through total internal reflection of the light-sheet. Through rapid refocusing of the light-sheet, the imaging depth is extended up to threefold while keeping the axial resolution constant. Using low magnification objectives with a large field of view, we realize mesoscopic imaging over a volume of 3.7×1.5×1 mm3 with ~2.3 microns lateral and ~9.2 microns axial resolution. Applying the mesoscopic OPM, we demonstrate in vivo and in toto whole organism imaging of the zebrafish vasculature and its endothelial nuclei, and blood flow dynamics at 12 Hz acquisition rate, resulting in a quantitative map of blood flow across the entire organism.

18.
ArXiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090235

RESUMO

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.

19.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131779

RESUMO

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.

20.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36155740

RESUMO

Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.


Assuntos
Sarcoma de Ewing , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imageamento Tridimensional , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA