RESUMO
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used around the world in both agricultural and non-agricultural fields due to its high activity. However, the heavy use of 2,4-D has resulted in serious environmental contamination, posing a significant risk to non-target organisms, including human beings. This has raised substantial concerns regarding its impact. In addition to agricultural use, accidental spills of 2,4-D can pose serious threats to human health and the ecosystem, emphasizing the importance of prompt pollution remediation. A variety of technologies have been developed to remove 2,4-D residues from the environment, such as incineration, adsorption, ozonation, photodegradation, the photo-Fenton process, and microbial degradation. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate 2,4-D pollution because of their rich species, wide distribution, and diverse metabolic pathways. Numerous studies demonstrate that the degradation of 2,4-D in the environment is primarily driven by enzymatic processes carried out by soil microorganisms. To date, a number of bacterial and fungal strains associated with 2,4-D biodegradation have been isolated, such as Sphingomonas, Pseudomonas, Cupriavidus, Achromobacter, Ochrobactrum, Mortierella, and Umbelopsis. Moreover, several key enzymes and genes responsible for 2,4-D biodegradation are also being identified. However, further in-depth research based on multi-omics is needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of 2,4-D. Here, this review provides a comprehensive analysis of recent progress on elucidating the degradation mechanisms of the herbicide 2,4-D, including the microbial strains responsible for its degradation, the enzymes participating in its degradation, and the associated genetic components. Furthermore, it explores the complex biochemical pathways and molecular mechanisms involved in the biodegradation of 2,4-D. In addition, molecular docking techniques are employed to identify crucial amino acids within an alpha-ketoglutarate-dependent 2,4-D dioxygenase that interacts with 2,4-D, thereby offering valuable insights that can inform the development of effective strategies for the biological remediation of this herbicide.
Assuntos
Ácido 2,4-Diclorofenoxiacético , Biodegradação Ambiental , Herbicidas , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/metabolismo , Herbicidas/química , Bactérias/metabolismo , Bactérias/genética , Microbiologia do Solo , Fungos/metabolismo , Fungos/genéticaRESUMO
Chloroacetamide herbicides are widely used around the world due to their high efficiency, resulting in increasing levels of their residues in the environment. Residual chloroacetamides and their metabolites have been frequently detected in soil, water and organisms and shown to have toxic effects on non-target organisms, posing a serious threat to the ecosystem. As such, rapid and efficient techniques that eliminate chloroacetamide residues from the ecosystem are urgently needed. Degradation of these herbicides in the environment mainly occurs through microbial metabolism. Microbial strains such as Acinetobacter baumannii DT, Bacillus altitudinis A16, Pseudomonas aeruginosa JD115, Sphingobium baderi DE-13, Catellibacterium caeni DCA-1, Stenotrophomonas acidaminiphila JS-1, Klebsiella variicola B2, and Paecilomyces marquandii can effectively degrade chloroacetamide herbicides. The degradation pathway of chloroacetamide herbicides in aerobic bacteria is mainly initiated by an N/C-dealkylation reaction, followed by aromatic ring hydroxylation and cleavage processes, whereas dechlorination is the initial reaction in anaerobic bacteria. The molecular mechanisms associated with bacterial degradation of chloroacetamide herbicides have been explored, with amidase, hydrolase, reductase, ferredoxin and cytochrome P450 oxygenase currently known to play a pivotal role in the catabolic pathways of chloroacetamides. The fungal pathway for the degradation of these herbicides is more complex with more diversified products, and the degradation enzymes and genes involved remain to be discovered. However, there are few reviews specifically summarizing the microbial degrading species and biochemical mechanisms of chloroacetamide herbicides. Here, we briefly summarize the latest progress resulting from research on microbial strain resources and enzymes involved in degradation of these herbicides and their corresponding genes. Furthermore, we explore the biochemical pathways and molecular mechanisms for biodegradation of chloroacetamide herbicides in depth, thereby providing a reference for further research on the bioremediation of such herbicides.
Assuntos
Herbicidas , Herbicidas/análise , Biodegradação Ambiental , Ecossistema , Redes e Vias MetabólicasRESUMO
The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Proteínas de Bactérias , Dickeya , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Macrolídeos , Doenças das Plantas/microbiologia , Poliaminas , Virulência/genéticaRESUMO
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA ß-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
Assuntos
Agrobacterium tumefaciens/patogenicidade , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Agrobacterium tumefaciens/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The MAP kinase high osmolarity glycerol 1 (Hog1) plays a central role in responding to external oxidative stress in budding yeast Saccchromyces cerevisiae. However, the downstream responsive elements regulated by Hog1 remain poorly understood. In this study, we report that a Sporisorium scitamineum orthologue of Hog1, named as SsHog1, induced transcriptional expression of a putative cytochrome P450 oxidoreductase encoding gene SsCPR1, to antagonize oxidative stress. We found that upon exposure to hydrogen peroxide (H2 O2 ), SsHog1 underwent strikingly phosphorylation, which was proved to be critical for transcriptional induction of SsCPR1. Loss of SsCPR1 led to hypersensitive to oxidative stress similar as the sshog1Δ mutant did, but was resistant to osmotic stress, which is different from the sshog1Δ mutant. On the other hand, overexpression of SsCPR1 in the sshog1Δ mutant could partially restore its ability of oxidative stress tolerance, which indicated that the Hog1 MAP kinase regulates the oxidative stress response specifically through cytochrome P450 (SsCpr1) pathway. Overall, our findings highlight a novel MAPK signalling pathway mediated by Hog1 in regulation of the oxidative stress response via the cytochrome P450 system, which plays an important role in host-fungus interaction.
Assuntos
Proteínas de Saccharomyces cerevisiae , Basidiomycota , Sobrevivência Celular , Regulação Fúngica da Expressão Gênica , Glicerol , Proteínas Quinases Ativadas por Mitógeno , Concentração Osmolar , Estresse Oxidativo , Oxirredutases , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The plant pathogen Xanthomonas campestris pv. campestris produces diffusible signal factor (DSF) quorum sensing (QS) signals to regulate its biological functions and virulence. Our previous study showed that X. campestris pv. campestris utilizes host plant metabolites to enhance the biosynthesis of DSF family signals. However, it is unclear how X. campestris pv. campestris benefits from the metabolic products of the host plant. In this study, we observed that the host plant metabolites not only boosted the production of the DSF family signals but also modulated the expression levels of DSF-regulated genes in X. campestris pv. campestris. Infection with X. campestris pv. campestris induced changes in the expression of many sugar transporter genes in Arabidopsis thaliana. Exogenous addition of sucrose or glucose, which are the major products of photosynthesis in plants, enhanced DSF signal production and X. campestris pv. campestris pathogenicity in the Arabidopsis model. In addition, several sucrose hydrolase-encoding genes in X. campestris pv. campestris and sucrose invertase-encoding genes in the host plant were notably upregulated during the infection process. These enzymes hydrolyzed sucrose to glucose and fructose, and in trans expression of one of these enzymes, CINV1 of A. thaliana or XC_0805 of X. campestris pv. campestris, enhanced DSF signal biosynthesis in X. campestris pv. campestris in the presence of sucrose. Taken together, our findings demonstrate that X. campestris pv. campestris applies multiple strategies to utilize host plant sugars to enhance QS and pathogenicity.
Assuntos
Glucose , Interações Hospedeiro-Patógeno , Sacarose , Xanthomonas campestris , Glucose/metabolismo , Doenças das Plantas/microbiologia , Sacarose/metabolismo , Virulência/fisiologia , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidadeRESUMO
BACKGROUND: Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. RESULTS: Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. CONCLUSIONS: Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.
Assuntos
Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , RNA-Seq , Xanthomonas/genética , Xanthomonas/fisiologia , Flagelos/genética , Perfilação da Expressão Gênica , Lipídeos de Membrana/metabolismo , Xanthomonas/metabolismoRESUMO
The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. The formation and growth of dikaryotic hypha after sexual mating is critical for S. scitamineum pathogenicity, however regulation of S. scitimineum mating has not been studied in detail. We identified and characterized the core components of the conserved cAMP/PKA pathway in S. scitamineum by reverse genetics. Our results showed that cAMP/PKA signalling pathway is essential for proper mating and filamentation, and thus critical for S. scitamineum virulence. We further demonstrated that an elevated intracellular ROS (reactive oxygen species) level promotes S. scitamineum mating-filamentation, via transcriptional regulation of ROS catabolic enzymes, and is under regulation of the cAMP/PKA signalling pathway. Furthermore, we found that fungal cAMP/PKA signalling pathway is also involved in regulation of host ROS response. Overall, our work displayed a positive role of elevated intracellular ROS in fungal differentiation and virulence.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Ustilaginales/fisiologia , Homeostase , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ustilaginales/patogenicidade , VirulênciaRESUMO
p53 is a well-known tumor suppressor and is also involved in processes of organismal aging and developmental control. A recent exciting development in the p53 field is the discovery of various p53 isoforms. One p53 isoform is human Delta133p53 and its zebrafish counterpart Delta113p53. These N-terminal-truncated p53 isoforms are initiated from an alternative p53 promoter, but their expression regulation and physiological significance at the organismal level are not well understood. We show here that zebrafish Delta113p53 is directly transactivated by full-length p53 in response to developmental and DNA-damaging signals. More importantly, we show that Delta113p53 functions to antagonize p53-induced apoptosis via activating bcl2L (closest to human Bcl-x(L)), and knockdown of Delta113p53 enhances p53-mediated apoptosis under stress conditions. Thus, we demonstrate that the p53 genetic locus contains a new p53 response gene and that Delta113p53 does not act in a dominant-negative manner toward p53 but differentially modulates p53 target gene expression to antagonize p53 apoptotic activity at the physiological level in zebrafish. Our results establish a novel feedback pathway that modulates the p53 response and suggest that modulation of the p53 pathway by p53 isoforms might have an impact on p53 tumor suppressor activity.
Assuntos
Apoptose/genética , Apoptose/fisiologia , Genes p53 , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , DNA/metabolismo , Dano ao DNA , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Retroalimentação Fisiológica , Genes Reporter , Modelos Biológicos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação/genética , Tolerância a Radiação/fisiologia , Deleção de Sequência , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologiaRESUMO
BACKGROUND: Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci, a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant SsΔMAT-1b mutant was defective in mating and pathogenicity. RESULTS: To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing the transcripts of the mutant strain SsΔMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription factors have previously been deleted, with those from the wild-type MAT-1 strain. Also the transcripts from SsΔMAT-1b X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were up-regulated (p < 0.05) in the SsΔMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SsΔMAT-1b X MAT-2, which failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05). By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37 down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets. CONCLUSIONS: Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose metabolism and Hog1-mediating oxidative response.
Assuntos
Basidiomycota/fisiologia , Meio Ambiente , Perfilação da Expressão Gênica , Reprodução Assexuada/genética , Transcriptoma , Metabolismo dos Carboidratos/genética , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Anotação de Sequência MolecularRESUMO
Sporisorium scitamineum is the causal agent of sugarcane smut, which is one of the most serious constraints to global sugarcane production. S. scitamineum and Ustilago maydis are two closely related smut fungi, that are predicted to harbor similar sexual mating processes/system. To elucidate the molecular basis of sexual mating in S. scitamineum, we identified and deleted the ortholog of mating-specific U. maydis locus b, in S. scitamineum. The resultant b-deletion mutant was defective in mating and pathogenicity in S. scitamineum. Furthermore, a functional b locus heterodimer could trigger filamentous growth without mating in S. scitamineum, and functionally replace the b locus in U. maydis in terms of triggering aerial filament production and forming solopathogenic strains, which do not require sexual mating prior to pathogenicity on the host plants.
Assuntos
Genes Fúngicos Tipo Acasalamento , Saccharum/microbiologia , Ustilaginales/genética , Ustilaginales/patogenicidade , Sequência de Aminoácidos , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Genética Reversa , Ustilaginales/crescimento & desenvolvimento , Ustilago/genética , Ustilago/patogenicidade , VirulênciaRESUMO
The life cycle of the sugarcane smut fungus Sporisorium scitamineum is a multistep process. Haploid sporidia of compatible (MAT-1 versus MAT-2) mating types fuse to generate pathogenic dikaryotic hyphae to infect the host. Within the host tissues, diploid teliospores are formed and induce a characteristic sorus that looks like a black whip. The diploid teliospores germinate to form haploid sporidia by meiosis. In order to monitor fungal development throughout the whole life cycle, we expressed the green fluorescent protein (GFP) and red fluorescent protein (RFP) in S. scitamineum MAT-1 and MAT-2 sporidia, respectively. Observation by epifluorescence microscope showed that conjugation tube formation and sporidia fusion occurred at 4 to 8 h, and formation of dikaryotic filaments was detected at 12 h after mating. The resultant teliospores, with diffused GFP and RFP, underwent meiosis as demonstrated by septated hypha with single fluorescent signal. We demonstrated that GFP- and RFP-tagged strains can be used to study the life cycle development of the fungal pathogen S. scitamineum, including the sexual mating and meiosis events. This dual-color imaging system would be a valuable tool for investigation of biotic and abiotic factors that might affect the fungal life cycle development and pathogenesis.
RESUMO
Pseudomonas aeruginosa uses a hierarchical quorum sensing (QS) network consisting of las, pqs and rhl regulatory elements to coordinate the expression of bacterial virulence genes. However, clinical isolates frequently contain loss-of-function mutations in the central las system. This motivated us to search for a mechanism that may functionally substitute las. Here we report identification of a new QS signal, IQS. Disruption of IQS biosynthesis paralyzes the pqs and rhl QS systems and attenuates bacterial virulence. Production of IQS is tightly controlled by las under normal culture conditions but is also activated by phosphate limitation, a common stressor that bacteria encounter during infections. Thus, these results have established an integrated QS system that connects the central las system and phosphate-stress response mechanism to the downstream pqs and rhl regulatory systems. Our discovery highlights the complexity of QS signaling systems and extends the gamut of QS and stress-response mechanisms.
Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transdução de Sinais , Estresse Fisiológico , Proteínas de Bactérias/genética , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genéticaRESUMO
Many bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals in modulation of virulence and biofilm formation. Previous work on Xanthomonas campestris showed that the RpfC/RpfG two-component system is involved in sensing and responding to DSF signals, but little is known in other microorganisms. Here we show that in Burkholderia cenocepacia the DSF-family signal cis-2-dodecenoic acid (BDSF) negatively controls the intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) level through a receptor protein RpfR, which contains Per/Arnt/Sim (PAS)-GGDEF-EAL domains. RpfR regulates the same phenotypes as BDSF including swarming motility, biofilm formation, and virulence. In addition, the BDSF(-) mutant phenotypes could be rescued by in trans expression of RpfR, or its EAL domain that functions as a c-di-GMP phosphodiesterase. BDSF is shown to bind to the PAS domain of RpfR with high affinity and stimulates its phosphodiesterase activity through induction of allosteric conformational changes. Our work presents a unique and widely conserved DSF-family signal receptor that directly links the signal perception to c-di-GMP turnover in regulation of bacterial physiology.
Assuntos
Burkholderia cenocepacia/genética , Ácidos Graxos Monoinsaturados/química , Guanosina Monofosfato/química , Percepção de Quorum/genética , Receptores de Superfície Celular/química , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/metabolismo , Comunicação Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Dimerização , Modelos Genéticos , Mutagênese , Mutação , Fenótipo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , VirulênciaRESUMO
The diffusible factor synthase XanB2, originally identified in Xanthomonas campestris pv. campestris (Xcc), is highly conserved across a wide range of bacterial species, but its substrate and catalytic mechanism have not yet been investigated. Here, we show that XanB2 is a unique bifunctional chorismatase that hydrolyses chorismate, the end-product of the shikimate pathway, to produce 3-hydroxybenzoic acid (3-HBA) and 4-HBA. 3-HBA and 4-HBA are respectively associated with the yellow pigment xanthomonadin biosynthesis and antioxidant activity in Xcc. We further demonstrate that XanB2 is a structurally novel enzyme with three putative domains. It catalyses 3-HBA and 4-HBA biosynthesis via a unique mechanism with the C-terminal YjgF-like domain conferring activity for 3-HBA biosynthesis and the N-terminal FGFG motif-containing domain responsible for 4-HBA biosynthesis. Furthermore, we show that Xcc produces coenzyme Q8 (CoQ8) via a new biosynthetic pathway independent of the key chorismate-pyruvate lyase UbiC. XanB2 is the alternative source of 4-HBA for CoQ8 biosynthesis. The similar CoQ8 biosynthetic pathway, xanthomonadin biosynthetic gene cluster and XanB2 homologues are well conserved in the bacterial species within Xanthomonas, Xylella, Xylophilus, Pseudoxanthomonas, Rhodanobacter, Frateuria, Herminiimonas and Variovorax, suggesting that XanB2 may be a conserved metabolic link between the shikimate pathway, ubiquinone and xanthomonadin biosynthetic pathways in diverse bacteria.
Assuntos
Anisóis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Ácido Corísmico/metabolismo , Ácido Chiquímico/metabolismo , Ubiquinona/metabolismo , Xanthomonas campestris/enzimologia , Vias Biossintéticas/genética , Deleção de Genes , Hidroxibenzoatos/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismoRESUMO
The Arabidopsis thaliana F-box protein CORONATINE INSENSITIVE1 (COI1) perceives jasmonate (JA) signals and subsequently targets the Jasmonate-ZIM domain proteins (JAZs) for degradation by the SCF(COI1)-26S proteasome pathway to mediate various jasmonate-regulated processes, including fertility, root growth, anthocyanin accumulation, senescence, and defense. In this study, we screened JAZ-interacting proteins from an Arabidopsis cDNA library in the yeast two-hybrid system. MYB21 and MYB24, two R2R3-MYB transcription factors, were found to interact with JAZ1, JAZ8, and JAZ11 in yeast and in planta. Genetic and physiological experiments showed that the myb21 myb24 double mutant exhibited defects specifically in pollen maturation, anther dehiscence, and filament elongation leading to male sterility. Transgenic expression of MYB21 in the coi1-1 mutant was able to rescue male fertility partially but unable to recover JA-regulated root growth inhibition, anthocyanin accumulation, and plant defense. These results demonstrate that the R2R3-MYB transcription factors MYB21 and MYB24 function as direct targets of JAZs to regulate male fertility specifically. We speculate that JAZs interact with MYB21 and MYB24 to attenuate their transcriptional function; upon perception of JA signal, COI1 recruits JAZs to the SCF(COI1) complex for ubiquitination and degradation through the 26S proteasome; MYB21 and MYB24 are then released to activate expression of various genes essential for JA-regulated anther development and filament elongation.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Flores/crescimento & desenvolvimento , Oxilipinas/metabolismo , Fatores de Transcrição/genética , Antocianinas/análise , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Infertilidade das Plantas , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS: In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS: We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION: Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.
Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Proteínas Fúngicas , Doenças das Plantas , Ácidos Graxos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharum/microbiologia , Virulência , ReproduçãoRESUMO
The cultivation of sugar cane using perennial roots is the primary planting method, which is one of the reasons for the serious occurrence of sugar cane smut disease caused by the basidiomycetous fungus Sporisorium scitamineum in the sugar cane perennial root planting area. Consequently, it is crucial to eliminate pathogens from perennial sugar cane buds. In this study, we found that MAP kinase Hog1 is necessary for heat stress resistance. Subsequent investigations revealed a significant reduction in the expression of the heat shock protein 104-encoding gene, SsHSP104, in the ss1hog1Δ mutant. Additionally, the overexpression of SsHSP104 partially restored colony growth in the ss1hog1Δ strain following heat stress treatment, demonstrating the crucial role of SsHsp104 in SsHog1-mediated heat stress tolerance. Hence, we constructed the ss1hsp104:eGFP fusion strain in the wild type of S. scitamineum to identify small-molecule compounds that could inhibit the heat stress response, leading to the discovery of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a potential compound that targets the SsHog1 mediation SsHsp104 pathway during heat treatment. Furthermore, the combination of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine and warm water treatment (45 °C for 15 min) inhibits the growth of S. scitamineum and teliospore germination, thereby reducing the occurrence of sugar cane smut diseases and indicating its potential for eliminating pathogens from perennial sugar cane buds. In conclusion, these findings suggest that N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine is promising as a targeted compound for the SsHog1-mediated SsHsp104 pathway and may enable the reduction of hot water treatment duration and/or temperature, thereby limiting the occurrence of sugar cane smut diseases caused by S. scitamineum.
Assuntos
Basidiomycota , Saccharum , Ustilaginales , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Basidiomycota/genética , Ustilaginales/fisiologia , Saccharum/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologiaRESUMO
Dickeya zeae is the causal agent of rice foot rot and maize stalk rot diseases, which could cause severe economic losses. The pathogen is known to produce two phytotoxins known as zeamine and zeamine II which are also potent antibiotics against both gram-positive and gram-negative bacteria pathogens. Zeamine II is a long-chain aminated polyketide and zeamine shares the same polyketide structure as zeamine II, with an extra valine derivative moiety conjugated to the primary amino group of zeamine II. In this study, we have identified a gene designated as zmsK encoding a putative nonribosomal peptide synthase (NRPS) by screening of the transposon mutants defective in zeamine production. Different from most known NRPS enzymes, which are commonly multidomain proteins, ZmsK contains only a condensation domain. High-performance liquid chromatography and mass spectrometry analyses showed that the ZmsK deletion mutant produced only zeamine II but not zeamine, suggesting that ZmsK catalyzes the amide bond formation by using zeamine II as a substrate to generate zeamine. We also present evidence that a partially conserved catalytic motif within the condensation domain is critical for zeamine production. Furthermore, we show that deletion of zmsK substantially decreased the total antimicrobial activity and virulence of D. zeae. Our findings provide a new insight into the biosynthesis pathway of zeamines and the virulence mechanisms of the bacterial pathogen D. zeae.
Assuntos
Anti-Infecciosos/metabolismo , Enterobacteriaceae/enzimologia , Macrolídeos/metabolismo , Oryza/microbiologia , Peptídeo Sintases/genética , Poliaminas/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Germinação , Macrolídeos/química , Espectrometria de Massas , Dados de Sequência Molecular , Oryza/fisiologia , Peptídeo Sintases/metabolismo , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Brotos de Planta/microbiologia , Brotos de Planta/fisiologia , Poliaminas/química , Estrutura Terciária de Proteína , Sementes/microbiologia , Sementes/fisiologia , Alinhamento de Sequência , Deleção de Sequência , VirulênciaRESUMO
IMPORTANCE: Reactive oxygen species play an important role in pathogen-plant interactions. In fungi, cytochrome c-peroxidase maintains intracellular ROS homeostasis by utilizing H2O2 as an electron acceptor to oxidize ferrocytochrome c, thereby contributing to disease pathogenesis. In this study, our investigation reveals that the cytochrome c-peroxidase encoding gene, SsCCP1, not only plays a key role in resisting H2O2 toxicity but is also essential for the mating/filamentation and pathogenicity of S. scitamineum. We further uncover that SsCcp1 mediates the expression of SsPrf1 by maintaining intracellular ROS homeostasis to regulate S. scitamineum mating/filamentation. Our findings provide novel insights into how cytochrome c-peroxidase regulates sexual reproduction in phytopathogenic fungi, presenting a theoretical foundation for designing new disease control strategies.