RESUMO
BACKGROUND: Ductal carcinoma in situ (DCIS) is the most common type of in situ premalignant breast cancers. What drives DCIS to invasive breast cancer is unclear. Basal-like invasive breast cancers are aggressive. We have previously shown that NRAS is highly expressed selectively in basal-like subtypes of invasive breast cancers and can promote their growth and progression. In this study, we investigated whether NRAS expression at the DCIS stage can control transition from luminal DCIS to basal-like invasive breast cancers. METHODS: Wilcoxon rank-sum test was performed to assess expression of NRAS in DCIS compared to invasive breast tumors in patients. NRAS mRNA levels were also determined by fluorescence in situ hybridization in patient tumor microarrays (TMAs) with concurrent normal, DCIS, and invasive breast cancer, and association of NRAS mRNA levels with DCIS and invasive breast cancer was assessed by paired Wilcoxon signed-rank test. Pearson's correlation was calculated between NRAS mRNA levels and basal biomarkers in the TMAs, as well as in patient datasets. RNA-seq data were generated in cell lines, and unsupervised hierarchical clustering was performed after combining with RNA-seq data from a previously published patient cohort. RESULTS: Invasive breast cancers showed higher NRAS mRNA levels compared to DCIS samples. These NRAShigh lesions were also enriched with basal-like features, such as basal gene expression signatures, lower ER, and higher p53 protein and Ki67 levels. We have shown previously that NRAS drives aggressive features in DCIS-like and basal-like SUM102PT cells. Here, we found that NRAS-silencing induced a shift to a luminal gene expression pattern. Conversely, NRAS overexpression in the luminal DCIS SUM225 cells induced a basal-like gene expression pattern, as well as an epithelial-to-mesenchymal transition signature. Furthermore, these cells formed disorganized mammospheres containing cell masses with an apparent reduction in adhesion. CONCLUSIONS: These data suggest that elevated NRAS levels in DCIS are not only a marker but can also control the emergence of basal-like features leading to more aggressive tumor activity, thus supporting the therapeutic hypothesis that targeting NRAS and/or downstream pathways may block disease progression for a subset of DCIS patients with high NRAS.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Carcinoma Ductal de Mama/patologia , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/patologia , Hibridização in Situ Fluorescente , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Mensageiro , Progressão da Doença , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismoRESUMO
eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 60S ribosomal proteins, chaperones, and the proteasome. eIF3 also associates with ribosome biogenesis factors and the importins-beta Kap123p and Sal3p. Our genetic data indicated that the binding to both importins-beta is essential for cell growth, and photobleaching experiments revealed a critical role for Sal3p in the nuclear import of one of the translasome constituents, the proteasome. Our data reveal the breadth of the eIF3 interactome and suggest that factors involved in translation initiation, ribosome biogenesis, translation elongation, quality control, and transport are physically linked to facilitate efficient protein synthesis.
Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Complexos Multiproteicos/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Enzimas/metabolismo , Modelos Moleculares , Mapeamento de Interação de Proteínas/métodos , Subunidades Ribossômicas/metabolismo , Proteínas de Schizosaccharomyces pombe/análise , Espectrometria de Massas em Tandem , beta Carioferinas/metabolismoRESUMO
NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.
Assuntos
Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neurofibromina 1/genética , Fulvestranto/farmacologia , Receptores de Estrogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição NFI , RNA Mensageiro , Quinases de Proteína Quinase Ativadas por MitógenoRESUMO
Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.
Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Endorribonucleases , Inibidores Enzimáticos , MAP Quinases Reguladas por Sinal Extracelular , Fatores de Transcrição de Choque Térmico , Neoplasias , Proteostase , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismoRESUMO
Cortical dysplasias (CDs) are highly epileptogenic lesions with a good prognosis of seizure freedom, if totally resected. However, their accurate delineation and resection can be difficult, and depend on the extent of pathology and lesion location. Intraoperative neurophysiologic assessments are valuable in these situations. We present an illustrative case of intractable epilepsy where judicious use of intraoperative neurophysiologic-techniques guided resection of precentral CD, under general anesthesia and in the absence of preoperative electrophysiologic mapping data. Ictal onset was accurately delineated using electrocorticography (ECoG). Phase reversal of the median somatosensory-evoked potentials (MSSEPs) localized the central sulcus (CS). Motor evoked potentials (MEPs) triggered by high-frequency monopolar anodal electrical cortical stimulation at the primary motor cortex (PMC) threshold delineated the PMC. Using this technique, PMC and the corticospinal tract (CST) were continuously monitored during resection. No changes in MEPs from the preresection baseline were seen; no residual abnormal activity was present in the postresection ECoG. The patient emerged from surgery without deficits and has been seizure free during a 10-month follow-up. Staged multimodal intraoperative neurophysiology can be used successfully under general anesthesia to guide resection of epileptogenic lesions within the precentral gyrus, as an add-on or, in certain situations, as a viable alternative to preoperative electrophysiologic mapping.
Assuntos
Mapeamento Encefálico , Epilepsia/diagnóstico , Epilepsia/cirurgia , Potencial Evocado Motor/fisiologia , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Monitorização Intraoperatória , Adulto , Eletroencefalografia , Eletromiografia , Feminino , Giro do Cíngulo/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Oxigênio/sangue , Tratos Piramidais/irrigação sanguínea , Tratos Piramidais/fisiopatologiaRESUMO
We characterized the Schizosaccharomyces pombe arc3 gene, whose product shares sequence homology with that of the budding yeast ARC18 and human ARPC3/p21 subunits of the Arp2/3 complex. Our data showed that Arc3p co-localizes with F-actin patches at the cell ends, but not with F-actin cables or the equatorial actin ring, and binds other subunits of the Arp2/3 complex. Gene deletion analysis showed that arc3 is essential for viability. When arc3 expression was repressed, F-actin patches became dispersed throughout the cell with greatly reduced mobility. Furthermore, in arc3-repressed cells, endocytosis was also inhibited. Human ARPC3 rescued the viability of the Sz. pombe arc3 null mutant; in addition, ARPC3 also localized to F-actin patches in human cells. These data suggest that Arc3p is an evolutionarily conserved subunit of the Arp2/3 complex required for proper F-actin organization and efficient endocytosis.
Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Endocitose , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Schizosaccharomyces/fisiologia , Deleção de Genes , Genes Essenciais , Genes Fúngicos , Teste de Complementação Genética , Viabilidade Microbiana , Schizosaccharomyces/metabolismoRESUMO
We report that neurofibromin, a tumor suppressor and Ras-GAP (GTPase-activating protein), is also an estrogen receptor-α (ER) transcriptional co-repressor through leucine/isoleucine-rich motifs that are functionally independent of GAP activity. GAP activity, in turn, does not affect ER binding. Consequently, neurofibromin depletion causes estradiol hypersensitivity and tamoxifen agonism, explaining the poor prognosis associated with neurofibromin loss in endocrine therapy-treated ER+ breast cancer. Neurofibromin-deficient ER+ breast cancer cells initially retain sensitivity to selective ER degraders (SERDs). However, Ras activation does play a role in acquired SERD resistance, which can be reversed upon MEK inhibitor addition, and SERD/MEK inhibitor combinations induce tumor regression. Thus, neurofibromin is a dual repressor for both Ras and ER signaling, and co-targeting may treat neurofibromin-deficient ER+ breast tumors.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neurofibromina 1/genética , Motivos de Aminoácidos , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Correpressoras , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Camundongos SCID , Mutação , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismoRESUMO
Ras GTPases are powerful drivers for tumorigenesis, but directly targeting Ras for treating cancer remains challenging. The growth and transforming activity of the aggressive basal-like breast cancer (BLBC) are driven by N-Ras. To target N-Ras in BLBC, this study screened existing pharmacologically active compounds for the new ability to induce N-Ras degradation, which led to the identification of flunarizine (FLN), previously approved for treating migraine and epilepsy. The FLN-induced N-Ras degradation was not affected by a 26S-proteasome inhibitor. Rather, it was blocked by autophagy inhibitors. Furthermore, N-Ras can be seen co-localized with active autophagosomes upon FLN treatment, suggesting that FLN alters the autophagy pathway to degrade N-Ras. Importantly, FLN treatment recapitulated the effect of N-RAS silencing in vitro by selectively inhibiting the growth of BLBC cells, but not that of breast cancer cells of other subtypes. In addition, in vivo FLN inhibited tumor growth of a BLBC xenograft model. In conclusion, this proof-of-principle study presents evidence that the autophagy pathway can be coerced by small molecule inhibitors, such as FLN, to degrade Ras as a strategy to treat cancer. FLN has low toxicity and should be further investigated to enrich the toolbox of cancer therapeutics.
Assuntos
Autofagia/efeitos dos fármacos , Flunarizina/farmacologia , Proteínas ras/metabolismo , Animais , Autofagossomos , Autofagia/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Genes Reporter , Humanos , Camundongos , Proteólise , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genéticaRESUMO
The original version of this Article contained errors in the depiction of confidence intervals in the NF1 BCSS data illustrated in Figure 3b. These have now been corrected in both the PDF and HTML versions of the Article. The incorrect version of Figure 3b is presented in the associated Author Correction.
RESUMO
Here we report targeted sequencing of 83 genes using DNA from primary breast cancer samples from 625 postmenopausal (UBC-TAM series) and 328 premenopausal (MA12 trial) hormone receptor-positive (HR+) patients to determine interactions between somatic mutation and prognosis. Independent validation of prognostic interactions was achieved using data from the METABRIC study. Previously established associations between MAP3K1 and PIK3CA mutations with luminal A status/favorable prognosis and TP53 mutations with Luminal B/non-luminal tumors/poor prognosis were observed, validating the methodological approach. In UBC-TAM, NF1 frame-shift nonsense (FS/NS) mutations were also a poor outcome driver that was validated in METABRIC. For MA12, poor outcome associated with PIK3R1 mutation was also reproducible. DDR1 mutations were strongly associated with poor prognosis in UBC-TAM despite stringent false discovery correction (q = 0.0003). In conclusion, uncommon recurrent somatic mutations should be further explored to create a more complete explanation of the highly variable outcomes that typifies ER+ breast cancer.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Mutação , Adulto , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase , Estudos de Coortes , Receptor com Domínio Discoidina 1/genética , Feminino , Humanos , MAP Quinase Quinase Quinase 1/genética , Pessoa de Meia-Idade , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinases/genética , Pós-Menopausa , Prognóstico , Receptores de Estrogênio/metabolismo , Análise de SobrevidaRESUMO
How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , MAP Quinase Quinase Quinases , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Proteínas ras/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Transdução de Sinais , Proteínas ras/genéticaRESUMO
Fission yeast Scd1 is an exchange factor for Cdc42 and an effector of Ras1. In a screen for scd1 interacting genes, we isolated klp5 and klp6, which encode presumptive kinesins. Klp5 and Klp6 form a complex to control the same processes, which so far include microtubule dynamics and chromosome segregation. We showed that klp5 or klp6 inactivation in combination with the scd1 deletion (scd1delta) created a synthetic temperature-dependent growth defect. Further genetic analysis demonstrated that Klp5 and Klp6 interacted specifically with the Ras1-Scd1 pathway, but not with the Ras1-Byr2 pathway. In addition, Klp5 and Klp6 can stably associate with Scd1 and Cdc42. A deletion in the Scd1 C terminus, which contains the PB1 domain, prevented Scd1 binding to Klp5/6 and caused a growth defect in Klp5/6 mutant cells that is indistinguishable from that induced by scd1delta. Analysis of the double-mutant phenotype indicated that at the nonpermissive temperature, cells failed to undergo cytokinesis efficiently. These cells contained abnormal contractile rings in which F-actin and Mid1, a key regulator of F-actin ring formation and positioning, are mispositioned and fragmented. These data suggest that Klp5/6 cooperate with the Ras1-Scd1 pathway to influence proper formation of the contractile ring for cytokinesis.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas ras , Actinas/metabolismo , Divisão Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Cinesinas/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/genéticaRESUMO
Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.
Assuntos
Neoplasias da Mama/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Interleucina-8/metabolismo , Janus Quinase 2/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , GTP Fosfo-Hidrolases/genética , Genes ras , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transdução de SinaisRESUMO
BACKGROUND: The INT6 gene was first discovered as a site of integration in mouse mammary tumors by the mouse mammary tumor virus; however, INT6's role in the development of human breast cancer remains largely unknown. By gene silencing, we have previously shown that repressing INT6 promotes transforming activity in untransformed human mammary epithelial cells. In the present study, guided by microarray data of human tumors, we have discovered a role of Int6 in stromal fibroblasts. RESULTS: We searched microarray databases of human tumors to assess Int6's role in breast cancer. While INT6 expression levels, as expected, were lower in breast tumors than in adjacent normal breast tissue samples, INT6 expression levels were also substantially lower in tumor stroma. By immunohistochemistry, we determined that the low levels of INT6 mRNA observed in the microarray databases most likely occurs in stromal fibroblasts, because far fewer fibroblasts in the tumor tissue showed detectable levels of the Int6 protein. To directly investigate the effects of Int6 repression on fibroblasts, we silenced INT6 expression in immortalized human mammary fibroblasts (HMFs). When these INT6-repressed HMFs were co-cultured with breast cancer cells, the abilities of the latter to form colonies in soft agar and to invade were enhanced. We analyzed INT6-repressed HMFs and found an increase in the levels of a key carcinoma-associated fibroblast (CAF) marker, smooth muscle actin. Furthermore, like CAFs, these INT6-repressed HMFs secreted more stromal cell-derived factor 1 (SDF-1), and the addition of an SDF-1 antagonist attenuated the INT6-repressed HMFs' ability to enhance soft agar colony formation when co-cultured with cancer cells. These INT6-repressed HMFs also expressed high levels of mesenchymal markers such as vimentin and N-cadherin. Intriguingly, when mesenchymal stem cells (MSCs) were induced to form CAFs, Int6 levels were reduced. CONCLUSION: These data suggest that besides enhancing transforming activity in epithelial cells, INT6 repression can also induce fibroblasts, and possibly MSCs as well, via mesenchymal-mesenchymal transitions to promote the formation of CAFs, leading to a proinvasive microenvironment for tumorigenesis.
RESUMO
While Ras GTPases are best known for mediating growth factor signaling on the plasma membrane, these proteins also have surprisingly complex activities in the endosome. Assisted by a method called bimolecular fluorescent complementation (BiFC), which can detect weak and transient protein-protein interactions and reveal where the binding takes place in live cells, we have identified three effectors, Cdc42, CHMP6, and VPS4A that interact with Ras proteins in endosomes. These effectors are all necessary for Ras-induced transformation, suggesting that for Ras proteins to efficiently induce tumor formation, they must also activate effectors in cytoplasm, such as those in endosomes. Here, we describe how BiFC can be used to detect and screen for Ras effectors and for readily revealing where in the cell the binding occurs.
Assuntos
Endossomos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Linhagem Celular Tumoral , Biblioteca Gênica , Células HEK293 , Humanos , Proteínas Luminescentes/biossíntese , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/biossínteseRESUMO
Ras can act on the plasma membrane (PM) to mediate extracellular signaling and tumorigenesis. To identify key components controlling Ras PM localization, we performed an unbiased screen to seek Schizosaccharomyces pombe mutants with reduced PM Ras. Five mutants were found with mutations affecting the same gene, S. pombe erf2 (sp-erf2), encoding sp-Erf2, a palmitoyltransferase, with various activities. sp-Erf2 localizes to the trans-Golgi compartment, a process which is mediated by its third transmembrane domain and the Erf4 cofactor. In fission yeast, the human ortholog zDHHC9 rescues the phenotypes of sp-erf2 null cells. In contrast, expressing zDHHC14, another sp-Erf2-like human protein, did not rescue Ras1 mislocalization in these cells. Importantly, ZDHHC9 is widely overexpressed in cancers. Overexpressing ZDHHC9 promotes, while repressing it diminishes, Ras PM localization and transformation of mammalian cells. These data strongly demonstrate that sp-Erf2/zDHHC9 palmitoylates Ras proteins in a highly selective manner in the trans-Golgi compartment to facilitate PM targeting via the trans-Golgi network, a role that is most certainly critical for Ras-driven tumorigenesis.
Assuntos
Aciltransferases/metabolismo , Membrana Celular/metabolismo , Transformação Celular Neoplásica , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas ras/metabolismo , Aciltransferases/genética , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sequência Conservada/genética , Evolução Molecular , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Mutação , Células NIH 3T3 , Ácidos Palmíticos/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas ras/genética , Rede trans-Golgi/metabolismoRESUMO
Characterizing the genetic alterations leading to the more aggressive forms of oestrogen receptor-positive (ER+) breast cancers is of critical significance in breast cancer management. Here we identify recurrent rearrangements between the oestrogen receptor gene ESR1 and its neighbour CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal B tumours, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170-positive tumours. These fusions encode amino-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity and enhanced xenograft tumour formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signalling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Separação Celular , Receptor alfa de Estrogênio/metabolismo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Fases de Leitura Aberta , Fenótipo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Transdução de SinaisRESUMO
Ras proteins are best known to function on the plasma membrane to mediate growth factor signaling. Controlling the length of time that Ras proteins stay on the plasma membrane is an effective way to properly modulate the intensity and duration of growth factor signaling. It has been shown previously that H- and N-Ras proteins in the GTP-bound state can be ubiquitylated via a K-63 linkage, which leads to endosome internalization and results in a negative-feedback loop for efficient signal attenuation. In a more recent study, two new Ras effectors have been isolated, CHMP6 and VPS4A, which are components of the ESCRT-III complex, best known for mediating protein sorting in the endosomes. Surprisingly, these molecules are required for efficient Ras-induced transformation. They apparently do so by controlling recycling of components of the Ras pathway back to the plasma membrane, thus creating a positive-feedback loop to enhance growth factor signaling. These results suggest the fates of endosomal Ras proteins are complex and dynamic - they can be either stored and/or destroyed or recycled. Further work is needed to decipher how the fate of these endosomal Ras proteins is determined.
Assuntos
Membrana Celular/metabolismo , Proteínas ras/metabolismo , Animais , Citoplasma/metabolismo , Endossomos/metabolismo , HumanosRESUMO
Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively.