RESUMO
BACKGROUND: Marfan syndrome (MFS) is an inherited connective tissue disorder that affects the skeletal, ocular, and cardiovascular system. The disease's severity and clinical manifestations vary greatly due to pathogenic variants which, combined with a lack of research on the correlation between MFS's genotype and phenotype, make MFS a challenging disease to diagnose. This study aims to further the understanding of MFS by shedding light on the clinical manifestation of a novel variant in fibrillin-1 (FBN1)-the protein responsible for the genetic defects that lead to MFS. METHODS: A patient was diagnosed with MFS by combining a clinical examination (based on the 2010 revision to Ghent nosology criteria) with a targeted next-generation sequence analysis. The functional analysis of the causal mutation and the clinical details of the affected patient were then analyzed. RESULTS: The FBN1 heterozygous variant c.5081_5082insT, which is known to delete large fragments from amino acids 1702 to 2871, was found in the proband patient and her son. The two also displayed the skeletal and cardiovascular manifestations of MFS. In addition, the 14-year-old son was identified as having a dilated aortic bulb at the same rupture site of the proband's dissection, and the proband's mother also died at age 32 due to aortic dissection. CONCLUSIONS: The FBN1 variant c.5081_5082insT (p.Leu1694fs*9) is a pathogenic mutation that can cause MFS patients to experience early-onset familial thoracic aortic aneurysms (TAA). We hope that this discovery can provide further insight into the treatment of MFS patients with truncating variants in exons 42-65.