Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 20(4)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37224822

RESUMO

Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell-cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC-LEC and BEC-BEC pairs and a sharp boundary between LEC-BEC pair, and fingering-like patterns with pseudo-LEC-BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell-cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell-cell adhesion forces between different cell types.


Assuntos
Células Endoteliais , Fractais , Movimento Celular
2.
Small ; 18(28): e2201330, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670145

RESUMO

Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Reperfusão , Traumatismo por Reperfusão/diagnóstico
3.
Anal Chem ; 93(16): 6456-6462, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861566

RESUMO

Rapid point-of-care (POC) quantification of low virus RNA load would significantly reduce the turn-around time for the PCR test and help contain a fast-spreading epidemic. Herein, we report a droplet digital PCR (ddPCR) platform that can achieve this sensitivity and rapidity without bulky lab-bound equipment. The key technology is a flattened pipette tip with an elliptical cross-section, which extends a high aspect-ratio microfluidic chip design to pipette scale, for rapid (<5 min) generation of several thousand monodispersed droplets ∼150 to 350 µm in size with a CV of ∼2.3%. A block copolymer surfactant (polyoxyalkylene F127) is used to stabilize these large droplets in oil during thermal cycling. At this droplet size and number, positive droplets can be counted by eye or imaged by a smartphone with appropriate illumination/filtering to accurately quantify up to 100 target copies. We demonstrate with 2019 nCoV-PCR assay LODs of 3.8 copies per 20 µL of sample and a dynamic range of 4-100 copies. The ddPCR platform is shown to be inhibitor resistant with spiked saliva samples, suggesting RNA extraction may not be necessary. It represents a rapid 1.5-h POC quantitative PCR test that requires just a pipette equipped with elliptical pipette tip, a commercial portable thermal cycler, a smartphone, and a portable trans-illuminator, without bulky and expensive micropumps and optical detectors that prevent POC application.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Carga Viral
4.
Electrophoresis ; 41(21-22): 1878-1892, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32180242

RESUMO

Liquid biopsy, screening cancer non-invasively and frequently by detecting and quantifying molecular markers in physiological fluids, would significantly improve cancer survival rate but it remains a distant goal. The key obstacles presented by the highly heterogeneous samples are rapid/high-yield purification and precise/selective marker capture by their antibody and oligo probes. As irregular expressions of these molecular biomarkers are the key signals, quantifying only those from the cancer cells would greatly enhance the performance of the screening tests. The recent discovery that the biomarkers are carried by nanocarriers, such as exosomes, with cell-specific membrane proteins suggests that such selection may be possible, although a new suite of fractionation and quantification technologies would need to be developed. Although under-appreciated, membrane microfluidics has made considerable contributions to resolving these issues. We review the progress made so far, based on ion-selective, track-etched, and gel membranes and advanced electrophoretic and nano-filtration designs, in this perspective and suggest future directions.


Assuntos
Biomarcadores Tumorais/análise , Detecção Precoce de Câncer/métodos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Técnicas Analíticas Microfluídicas/métodos , Vesículas Extracelulares/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Nanoporos
5.
J Chem Phys ; 153(3): 035102, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716192

RESUMO

We report the first analytical theory on the amplitude of resistive signals during molecular translocation through charged solid-state nanopores with variable cross-sectional area and piecewise-constant surface charge densities. By providing closed-form explicit algebraic expressions for the concentration profiles inside charged nanopores, this theory allows the prediction of baseline and translocation resistive signals without the need for numerical simulation of the electrokinetic phenomena. A transversely homogenized theory and an asymptotic expansion for weakly charged pores capture DC or quasi-static rectification due to field-induced intrapore concentration polarization (as a result of pore charge inhomogeneity or a translocating molecule). This theory, validated by simulations and experiments, is then used to explain why the amplitude of a single stranded DNA molecule can be twice as high as the amplitude of its double stranded counterpart. It also suggests designs for intrapore concentration polarization and volume exclusion effects that can produce biphasic and other amplitude fingerprints for high-throughput and yet discriminating molecular identification.


Assuntos
Modelos Teóricos , Movimento (Física) , Nanoporos
6.
Electrophoresis ; 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29484678

RESUMO

Exosomes carry microRNA biomarkers, occur in higher abundance in cancerous patients than in healthy ones, and because they are present in most biofluids, including blood and urine, these can be obtained noninvasively. Standard laboratory techniques to isolate exosomes are expensive, time consuming, provide poor purity, and recover on the order of 25% of the available exosomes. We present a new microfluidic technique to simultaneously isolate exosomes and preconcentrate them by electrophoresis using a high transverse local electric field generated by ion-depleting ion-selective membrane. We use pressure-driven flow to deliver an exosome sample to a microfluidic chip such that the transverse electric field forces them out of the cross flow and into an agarose gel which filters out unwanted cellular debris while the ion-selective membrane concentrates the exosomes through an enrichment effect. We efficiently isolated exosomes from 1× PBS buffer, cell culture media, and blood serum. Using flow rates from 150 to 200 µL/h and field strengths of 100 V/cm, we consistently captured between 60 and 80% of exosomes from buffer, cell culture media, and blood serum as confirmed by both fluorescence spectroscopy and nanoparticle tracking analysis. Our microfluidic chip maintained this recovery rate for more than 20 min with a concentration factor of 15 for 10 min of isolation.

7.
J Chem Phys ; 149(8): 085102, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193482

RESUMO

We verify both theoretically and by simulation that an AC electric field, with a frequency much higher than the dissociation rate, can significantly accelerate the dissociation rate of biological molecules under isothermal conditions. The cumulative effect of the AC field is shown to break a key bottleneck by reducing the entropy (and increasing the free energy of the local minimum) via the alignment of the molecular dipole with the field. For frequencies below a resonant frequency which corresponds to the inverse Debye dipole relaxation time, the dissociation rate can be accelerated by a factor that scales as ω(ϵ'(ω)-1)E02 , where ω is the field frequency, E0 is the field amplitude, and ϵ'(ω) is the frequency-dependent real permittivity of the molecule. At large amplitudes, we find that the accelerated melting rate becomes universal, independent of duplex size and sequence, which is in drastic contrast to Ohmic thermal melting. We confirm our theory with isothermal all-atomic molecular dynamics simulation of short DNA duplexes with known melting rates, demonstrating several orders in enhancement with realistic fields.


Assuntos
DNA/química , Campos Eletromagnéticos , Simulação de Dinâmica Molecular , Fenômenos Eletromagnéticos , Cinética , Modelos Biológicos , Desnaturação de Ácido Nucleico
8.
Electrophoresis ; 38(20): 2592-2602, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28726313

RESUMO

Selectivity against mutant nontargets with a few mismatches remains challenging in nucleic acid sensing. Sensitivity enhancement by analyte concentration does not improve selectivity because it affects targets and nontargets equally. Hydrodynamic or electrical shear enhanced selectivity is often accompanied by substantial losses in target signals, thereby leading to poor limits of detection. We introduce a platform based on depletion isotachophoresis in agarose gel generated by an ion-selective membrane that allows both selectivity and sensitivity enhancement with a two-step assay involving concentration polarization at an ion-selective membrane. By concentrating both the targets and probe-functionalized nanoparticles by ion enrichment at the membrane, the effective thermodynamic dissociation constant is lowered from 40 nM to below 500 pM, and the detection limit is 10 pM as reported previously. A dynamically optimized ion depletion front is then generated from the membrane with a high electrical shear force to selectively and irreversibly dehybridize nontargets. The optimized selectivity against a two-mismatch nontarget (in a 35-base pairing sequence) is shown to be better than the thermodynamic equilibrium selectivity by more than a hundred-fold, such that there is no detectable signal from the two-mismatch nontarget. We offer empirical evidence that irreversible cooperative dehybridization plays an important role in this kinetic selectivity enhancement and that mismatch location controls the optimum selectivity even when there is little change in the corresponding thermodynamic dissociation constant.


Assuntos
DNA/análise , Eletroforese em Microchip/instrumentação , Ouro/química , Isotacoforese/métodos , Nanopartículas Metálicas/química , Pareamento Incorreto de Bases , Géis , Humanos , Isotacoforese/instrumentação , Cinética , Tamanho da Partícula , Sensibilidade e Especificidade , Sefarose , Propriedades de Superfície , Termodinâmica
9.
J Chem Phys ; 147(13): 135101, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987107

RESUMO

By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.


Assuntos
DNA/química , Entropia , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Temperatura de Transição , Vibração
10.
Phys Rev Lett ; 117(13): 134301, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715110

RESUMO

A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.

11.
Small ; 11(39): 5206-13, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26248477

RESUMO

The formation of a nanoscale anodic silicon oxide layer on silicon electrodes in an aqueous environment leads to fluidic-based ionic memristive devices and ionic latches for large integrated fluidic ion logic circuitry, which can enable massively multiplexed smart biosensor arrays and complex active chemical circuits.

12.
J Chem Phys ; 143(22): 224705, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671394

RESUMO

We report the first nanofluidic inductor (L) to complement the known nanofluidic capacitors (C), resistors (R), and diodes for ion currents. Under negative bias, the nanopore behaves like a parallel RC circuit at low frequencies; however, under positive bias, the asymptotic dynamics is that of a serial RL circuit. This new ionic circuit element can lead to nanofluidic RLC or diode-inductor oscillator circuits and new intrapore biosensing/rapid sequencing strategies. A universal theory, with explicit estimates for the capacitance and inductance at opposite biases, is derived to collapse the rectified dynamics of all conic nanopores to facilitate design of this new nanofluidic circuit.

13.
J Chem Phys ; 143(22): 224706, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671395

RESUMO

Ion current rectification inversion is observed in a funnel-shaped nanochannel above a threshold voltage roughly corresponding to the under-limiting to over-limiting current transition. Previous experimental studies have examined rectification at either low-voltages (under-limiting current region) for conical nanopores/funnel-shaped nanochannels or at high-voltages (over-limiting region) for straight nanochannels with asymmetric entrances or asymmetric interfacing microchannels. The observed rectification inversion occurs because the system resistance is shifted, beyond a threshold voltage, from being controlled by intra-channel ion concentration-polarization to that controlled by external concentration-polarization. Additionally, strong hysteresis effects, due to residual concentration-polarization, manifest themselves through the dependence of the transient current rectification on voltage scan rate.

14.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659930

RESUMO

Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 49 fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.

15.
Commun Biol ; 7(1): 677, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830977

RESUMO

We present a quantitative sandwich immunoassay for CD63 Extracellular Vesicles (EVs) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane functionalized with capture antibodies and a charged silica nanoparticle reporter functionalized with detection antibodies. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins, thus enabling direct plasma analysis without the need for EV isolation or sensor blocking. With a LOD of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. We analysed untreated clinical samples of Glioblastoma to demonstrate this new platform. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.


Assuntos
Receptores ErbB , Vesículas Extracelulares , Glioblastoma , Tetraspanina 30 , Humanos , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Tetraspanina 30/metabolismo , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Imunoensaio/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico
16.
J Biotechnol ; 383: 27-38, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336281

RESUMO

The widespread adoption of genetically modified (GM) crops has escalated concerns about their safety and ethical implications, underscoring the need for efficient GM crop detection methods. Conventional detection methods, such as polymerase chain reaction, can be costly, lab-bound, and time-consuming. To overcome these challenges, we have developed RapiSense, a cost-effective, portable, and sensitive biosensor platform. This sensor generates a measurable voltage shift (0.1-1 V) in the system's current-voltage characteristics, triggered by an increase in membrane's negative charge upon hybridization of DNA/RNA targets with a specific DNA probe. Probes designed to identify the herbicide resistance gene hygromycin phosphotransferase show a detection range from ∼1 nM to ∼10 µM and can discriminate between complementary, non-specific, and mismatched nucleotide targets. The incorporation of a small membrane sensor to detect fragmented RNA samples substantially improve the platform's sensitivity. In this study, RapiSense has been effectively used to detect specific DNA and fragmented RNA in transgenic variants of Arabidopsis, sweet potato, and rice, showcasing its potential for rapid, on-site GM crop screening.


Assuntos
Produtos Agrícolas , RNA , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Reação em Cadeia da Polimerase/métodos , DNA
17.
Opt Express ; 21(5): 6609-17, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482232

RESUMO

We propose an analytical theory which predicts that Converging Plasmon Resonance (CPR) at conical nanotips exhibits a red-shifted and continuous band of resonant frequencies and suggests potential application of conical nanotips in various fields, such as plasmonic solar cells, photothermal therapy, tip-enhanced Raman and other spectroscopies. The CPR modes exhibit superior confinement and ten times broader scattering bandwidth over the entire solar spectrum than smooth nano-structures. The theory also explicitly connects the optimal angles and resonant optical frequencies to the material permittivities, with a specific optimum half angle that depends only on the real permittivity for high-permittivity and low-loss materials.


Assuntos
Nanoestruturas/química , Ressonância de Plasmônio de Superfície , Simulação por Computador , Ouro/química
18.
Langmuir ; 29(26): 8275-83, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23742037

RESUMO

The physisorption of negatively charged single-stranded DNA (ssDNA) of different lengths onto the surface of anion-exchange membranes is sensitively shown to alter the anion flux through the membrane. At low surface concentrations, the physisorbed DNAs act to suppress an electroconvection vortex instability that drives the anion flux into the membrane and hence reduce the overlimiting current through the membrane. Beyond a critical surface concentration, determined by the total number of phosphate charges on the DNA, the DNA layer becomes a cation-selective membrane, and the combined bipolar membrane has a lower net ion flux, at low voltages, than the original membrane as a result of ion depletion at the junction between the cation- (DNA) and anion-selective membranes. However, beyond a critical voltage that is dependent on the ssDNA coverage, water splitting occurs at the junction to produce a larger overlimiting current than that of the original membrane. These two large opposite effects of polyelectrolyte counterion sorption onto membrane surfaces may be used to eliminate limiting current constraints of ion-selective membranes for liquid fuel cells, dialysis, and desalination as well as to suggest a new low-cost membrane surface assay that can detect and quantify the number of large biomolecules captured by probes functionalized on the membrane surface.


Assuntos
DNA de Cadeia Simples/química , Íons/química , Água/química , Técnicas Eletroquímicas , Troca Iônica , Membranas Artificiais , Eletricidade Estática , Propriedades de Superfície
19.
J Chem Phys ; 138(4): 044706, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387614

RESUMO

We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as defined by a normalized density of the surface charge, significantly affects ion current rectification across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves through the tip, respectively), which is responsible for current rectification. For strongly selective negatively charged pores under positive bias, the current can be reduced by external field focusing and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These external phenomena produce a rectification inversion for highly selective pores at high (low) voltage (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we derive simple scaling laws to quantitatively capture empirical and numerical data for ion current rectification and rectification inversion of conic nanopores.

20.
Nat Commun ; 14(1): 557, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732521

RESUMO

Cardiovascular disease-related deaths (one-third of global deaths) can be reduced with a simple screening test for better biomarkers than the current lipid and lipoprotein profiles. We propose using a highly atheroprotective subset of HDL with colocalized PON1 (PON1-HDL) for superior cardiovascular risk assessment. However, direct quantification of HDL proteomic subclasses are complicated by the peroxides/antioxidants associated with HDL interfering with redox reactions in enzymatic calorimetric and electrochemical immunoassays. Hence, we developed an enzyme-free Nanoparticle-Gated Electrokinetic Membrane Sensor (NGEMS) platform for quantification of PON1-HDL in plasma within 60 min, with a sub-picomolar limit of detection, 3-4 log dynamic range and without needing sample pretreatment or individual-sample calibration. Using NGEMS, we report our study on human plasma PON1-HDL as a cardiovascular risk marker with AUC~0.99 significantly outperforming others (AUC~0.6-0.8), including cholesterol/triglycerides tests. Validation for a larger cohort can establish PON1-HDL as a biomarker that can potentially reshape cardiovascular landscape.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Proteômica , Fatores de Risco , Lipoproteínas , Fatores de Risco de Doenças Cardíacas , Arildialquilfosfatase , HDL-Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA