Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 146(1): 833-848, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113458

RESUMO

The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure-property-performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.

2.
Small ; 20(6): e2304743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803930

RESUMO

Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.

3.
Small ; 19(42): e2302682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322304

RESUMO

Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1  g-1 and 150.7 mmol h-1  m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.

4.
J Am Chem Soc ; 141(20): 8296-8305, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31055917

RESUMO

Metal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX3, where A is a monovalent cation (e.g., methylammonium (MA+), Cs+), B is the divalent metal ion(s) (e.g., Pb2+, Sn2+), and X is the halide group (e.g., Cl-, Br-, or I-), the isovalent exchange of A- and X-site ions has been widely accomplished; in contrast, strategies to exchange B-site cations are underexamined. The activation energies for vacancy-mediated diffusion of B-site cations are much higher than those for A- and X-sites, leading to slow doping processes and low doping ratios. Herein we demonstrate a new method that exchanges B-site cations in perovskites. We design a series of metal carboxylate solutions that anchor on the perovskite surface, allowing fast and efficient doping of B-sites with both homovalent and heterovalent cations (e.g., Sn2+, Zn2+, Bi3+) at room temperature. The doping process in the reduced-dimensional perovskites is complete within 1 min, whereas a similar reaction only leads to the surface attachment of dopant ions in three-dimensional structures. We offer a model based on ammonium extraction and surface ion-pair substitution.

5.
Langmuir ; 34(17): 5030-5039, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29606007

RESUMO

A gas-phase-controlled synthetic approach is demonstrated to fabricate Ag-ZnO hybrid nanostructure as a high-performance catalyst for photodegradation of water pollutants. The degradation of rhodamine B (RhB) was used as representative, which were tested and evaluated with respect to the environmental pH and the presence of dodecyl sulfate corona on the surface of the catalyst. The results show that a raspberry-structure Ag-ZnO hybrid nanoparticle cluster was successfully synthesized via gas-phase evaporation-induced self-assembly. The photodegradation activity increased significantly (20×) by using the Ag-ZnO hybrid nanoparticle cluster as a catalyst. A surge of catalytic turnover frequency of ZnO nanoparticle cluster (>20×) was observed through the hybridization with silver nanoparticles. The dodecyl sulfate corona increased the photocatalytic activity of the Ag-ZnO hybrid nanoparticle cluster, especially at the acidic and neutral pH environments (maximum 6×), and the enhancement in catalytic activity was attributed to the improved colloidal stability of ZnO-based nanoparticle cluster under the interaction with RhB. Our work provides a generic route of facile synthesis of the Ag-ZnO hybrid nanoparticle cluster with a mechanistic understanding of the interface reaction for enhancing photocatalysis toward the degradation of water pollutants.

6.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166379

RESUMO

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

7.
Nanoscale Adv ; 6(3): 947-959, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298598

RESUMO

Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.

8.
Nat Commun ; 14(1): 8519, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129386

RESUMO

The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.


Assuntos
Bactérias , Transdução de Sinais , Animais , Ligantes , Bactérias/metabolismo , Genes Bacterianos , Nucleotidiltransferases/metabolismo , Imunidade Inata
9.
J Colloid Interface Sci ; 490: 802-811, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27997848

RESUMO

We report a systematic study of the controlled synthesis of new hybrid spherical TiO2 nanoparticle cluster (TiO2-NPC) homogeneously decorated with noble metal nanoparticles (NPs) by gas-phase evaporation-induced self-assembly. Silver NP (AgNP) was used as the representative noble metal NP. The degradation of methyl blue (MB) in the aqueous solution was chosen as the representative system for the study of photocatalysis, which were tested and evaluated with respect to irradiation conditions and the presence of bovine serum albumin (BSA). The results show that particle size and chemical composition of the hybrid nanostructure were tunable by choosing the suitable concentration of precursors. The photocatalytic activity of AgNP-decorated TiO2-NPC was strongly affected by the light irradiation and the ligand-nanoparticle interfacial interaction. The presence of BSA influenced molecular conjugation to the surface of the hybrid nanostructure. Under conditions of simultaneous competitive adsorption of MB and BSA, the combination of AgNPs improved the photocatalytic activity of the TiO2-NPC-based catalysts. Our work describes a prototype methodology to fabricate TiO2-NPC homogeneously decorated with noble metal NPs with well-controlled material properties. The mechanistic understanding developed in this study can be useful for the future optimization of material properties of hybrid nanostructures versus interfacial interactions with the surrounding molecules.


Assuntos
Benzenossulfonatos/isolamento & purificação , Nanopartículas/química , Fotólise , Prata/química , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Aerossóis/química , Animais , Benzenossulfonatos/química , Catálise , Bovinos , Coloides/química , Nanopartículas/ultraestrutura , Soroalbumina Bovina/química , Poluentes Químicos da Água/química
10.
ACS Appl Mater Interfaces ; 9(42): 36897-36906, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28984127

RESUMO

We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH3NH3)2PbI2Cl2·CH3NH3I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH3NH3I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

11.
Adv Mater ; 28(44): 9831-9838, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717140

RESUMO

The necessity for new sources for greener and cleaner energy production to replace the existing ones has been increasingly growing in recent years. Of those new sources, the hydrogen evolution reaction has a large potential. In this work, for the first time, MoSe2 /Mo core-shell 3D-hierarchical nanostructures are created, which are derived from the Mo 3D-hierarchical nanostructures through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA