Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 2501, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051525

RESUMO

Twist1 encodes a basic helix-loop-helix transcription factor (TF), which forms homodimer or heterodimer with other TFs, like E2A, to regulate target genes' expression. Mutations in TWIST1 are associated with Saethre-Chotzen syndrome (SCS), a rare congenital disorder characterized with osteogenesis abnormalities. However, how dysfunction of TWIST1 leads to SCS is still largely unknown. Here, using an unbiased ENU-induced mutagenesis screening, we identified a novel Twist1 mutation and the mutant mouse phenocopies some features of SCS in a dominant manner. Physically, our mutation p.F191S lies at the edge of a predicted α-helix in Twist1 transactivation (TA) domain. Adjacent to F191, a consecutive three-residue (AFS) has been hit by 3 human and 2 mouse disease-associated mutations, including ours. Unlike previously reported mouse null and p.S192P alleles that lead to hindlimb polydactyly with incomplete penetrance but a severe craniofacial malformation, our p.F191S causes the polydactyly (84.2% bilateral and 15.8% unilateral) with complete penetrance but a mild craniofacial malformation. Consistent with the higher penetrance, p.F191S has stronger impairment on E2A-dependent transcription than p.S192P. Although human p.A186T and mouse p.S192P disease mutations are adjacent to ours, these three mutations function differently to impair the E2A-dependent transcription. Unlike p.A186T and p.S192S that disturb local protein conformation and unstabilize the mutant proteins, p.F191S keeps the mutant protein stable and its interaction with E2A entire. Therefore, we argue that p.F191S we identified acts in a dominant-negative manner to impair E2A-dependent transcription and to cause the biological consequences. In addition, the mutant mouse we provided here could be an additional and valuable model for better understanding the disease mechanisms underlying SCS caused by TWIST1 dysfunction.


Assuntos
Mutação , Penetrância , Polidactilia/genética , Proteína 1 Relacionada a Twist/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Etilnitrosoureia/toxicidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Domínios Proteicos , Proteína 1 Relacionada a Twist/química , Proteína 1 Relacionada a Twist/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2257-2266, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075491

RESUMO

Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5:c.569G>A:p.(Arg189Gln)) in combination with the common (NM_000365.5:c.315G>C:p.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/patologia , Erros Inatos do Metabolismo dos Carboidratos/patologia , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Alelos , Sequência de Aminoácidos , Anemia Hemolítica Congênita não Esferocítica/genética , Animais , Sequência de Bases , Erros Inatos do Metabolismo dos Carboidratos/genética , Domínio Catalítico , Pré-Escolar , Dimerização , Modelos Animais de Doenças , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Mutação de Sentido Incorreto , Linhagem , Estabilidade Proteica , Alinhamento de Sequência , Triose-Fosfato Isomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA