Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(9): 4223-4236, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484109

RESUMO

Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.


Assuntos
RNA Polimerase III , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , Ligação Proteica , Domínios Proteicos , RNA Polimerase III/química , RNA Polimerase III/metabolismo , RNA de Transferência/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202259

RESUMO

During this global pandemic, cryo-EM has made a great impact on the structure determination of COVID-19 proteins. However, nearly all high-resolution results are based on data acquired on state-of-the-art microscopes where their availability is restricted to a number of centers across the globe with the studies on infectious viruses being further regulated or forbidden. One potential remedy is to employ multipurpose microscopes. Here, we investigated the capability of 200 kV multipurpose microscopes equipped with a direct electron camera in determining the structures of infectious particles. We used 30 nm particles of the grouper nerve necrosis virus as a test sample and obtained the cryo-EM structure with a resolution as high as ∼2.7 Šfrom a setting that used electron counting. For comparison, we tested a high-end cryo-EM (Talos Arctica) using a similar virus (Macrobrachium rosenbergii nodavirus) to obtain virtually the same resolution. Those results revealed that the resolution is ultimately limited by the depth of field. Our work updates the density maps of these viruses at the sub-3Šlevel to allow for building accurate atomic models from de novo to provide structural insights into the assembly of the capsids. Importantly, this study demonstrated that multipurpose TEMs are capable of the high-resolution cryo-EM structure determination of infectious particles and is thus germane to the research on pandemics.


Assuntos
Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , SARS-CoV-2/fisiologia , Vírion/química , COVID-19/patologia , COVID-19/virologia , Humanos , Imageamento Tridimensional , Modelos Moleculares , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação
3.
Methods ; 159-160: 59-69, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742995

RESUMO

Our capability to visualize protein complexes such as RNA polymerase II (pol II) by single-molecule imaging techniques has largely been hampered by the absence of a simple bio-orthogonal approach for selective labeling with a fluorescent probe. Here, we modify the existing calmodulin-binding peptide (CBP) in the widely used Tandem Affinity Purification (TAP) tag to endow it with a high affinity for calmodulin (CaM) and use dye-CaM to conduct site-specific labeling of pol II. To demonstrate the single molecule applicability of this approach, we labeled the C-terminus of the Rpb9 subunit of pol II with donor-CaM and a site in TFIIF with an acceptor to generate a FRET (fluorescence resonance energy transfer) pair in the pol II-TFIIF complex. We then used total internal reflection fluorescence microscopy (TIRF) with alternating excitation to measure the single molecule FRET (smFRET) efficiency between these two sites in pol II-TFIIF. We found they exhibited a proximity consistent with that observed in the transcription pre-initiation complex by cryo-electron microscopy (cryo-EM). We further compared our non-covalent labeling approach with an enzyme-enabled covalent labeling method. The virtually indistinguishable results validate our smFRET approach and show that the observed proximity between the two sites represents a hallmark of the pol II-TFIIF complex. Taken together, we present a simple and versatile bio-orthogonal method derived from TAP to enable selective labeling of a protein complex. This method is suitable for analyzing dynamic relationships among proteins involved in transcription and it can be readily extended to many other biological processes.


Assuntos
Proteínas de Ligação a Calmodulina , Transferência Ressonante de Energia de Fluorescência/métodos , RNA Polimerase II/metabolismo , Purificação por Afinidade em Tandem , Microscopia Crioeletrônica , Imagem Individual de Molécula/métodos , Fatores de Transcrição TFII/metabolismo
4.
Nucleic Acids Res ; 45(16): 9679-9693, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934473

RESUMO

Splicing is initiated by a productive interaction between the pre-mRNA and the U1 snRNP, in which a short RNA duplex is established between the 5' splice site of a pre-mRNA and the 5' end of the U1 snRNA. A long-standing puzzle has been why the AU dincucleotide at the 5'-end of the U1 snRNA is highly conserved, despite the absence of an apparent role in the formation of the duplex. To explore this conundrum, we varied this AU dinucleotide into all possible permutations and analyzed the resulting molecular consequences. This led to the unexpected findings that the AU dinucleotide dictates the optimal binding of cap-binding complex (CBC) to the 5' end of the nascent U1 snRNA, which ultimately influences the utilization of U1 snRNP in splicing. Our data also provide a structural interpretation as to why the AU dinucleotide is conserved during evolution.


Assuntos
Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Pareamento de Bases , Simulação de Acoplamento Molecular , Complexo Proteico Nuclear de Ligação ao Cap/genética , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/genética , Leveduras/crescimento & desenvolvimento
5.
EMBO J ; 31(17): 3575-87, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22850672

RESUMO

In mammals, a distinct RNA polymerase II form, RNAPII(G) contains a novel subunit Gdown1 (encoded by POLR2M), which represses gene activation, only to be reversed by the multisubunit Mediator co-activator. Here, we employed single-particle cryo-electron microscopy (cryo-EM) to disclose the architectures of RNAPII(G), RNAPII and RNAPII in complex with the transcription initiation factor TFIIF, all to ~19 Å. Difference analysis mapped Gdown1 mostly to the RNAPII Rpb5 shelf-Rpb1 jaw, supported by antibody labelling experiments. These structural features correlate with the moderate increase in the efficiency of RNA chain elongation by RNAP II(G). In addition, our updated RNAPII-TFIIF map showed that TFIIF tethers multiple regions surrounding the DNA-binding cleft, in agreement with cross-linking and biochemical mapping. Gdown1's binding sites overlap extensively with those of TFIIF, with Gdown1 sterically excluding TFIIF from RNAPII, herein demonstrated by competition assays using size exclusion chromatography. In summary, our work establishes a structural basis for Gdown1 impeding initiation at promoters, by obstruction of TFIIF, accounting for an additional dependent role of Mediator in activated transcription.


Assuntos
RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/metabolismo , Animais , Ligação Competitiva , Bovinos , Cromatografia em Gel , Microscopia Crioeletrônica , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/ultraestrutura , Transcrição Gênica
6.
Sci Rep ; 14(1): 14079, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890341

RESUMO

While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.


Assuntos
Microscopia Crioeletrônica , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Conformação Proteica , Microscopia Crioeletrônica/métodos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/química , Rituximab/química , Humanos , Modelos Moleculares
7.
J Struct Biol ; 184(1): 52-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23732819

RESUMO

TFIIF-a general transcription factor comprising two conserved subunits can associate with RNA polymerase II (RNAPII) tightly to regulate the synthesis of messenger RNA in eukaryotes. Herein, a hybrid method that combines electron microscopy (EM) and Förster resonance energy transfer (FRET) is described and used to localize the C-terminus of the second TFIIF subunit (Tfg2) in the architecture of RNAPII-TFIIF. In the first stage, a poly-histidine tag appended to the Tfg2 C-terminus was labeled with nickel-NTA nanogold and a seven-step single particle EM protocol was devised to obtain the region accessible by the nanogold in 3D, suggesting the Tfg2 C-terminus is proximal to the clamp of RNAPII. Next, the C-termini of the Rpb2 and the Rpb4 subunits of RNAPII, adjacent to the clamp, were selected for placing FRET satellites to enable the nano-positioning (NP) analysis, by which the localization precision was improved such that the Tfg2 C-terminus was found to dwell on the clamp ridge but could move to the clamp top during transcription. Because the tag receptive to the EM or FRET probes can be readily introduced to any protein subunit, this hybrid approach is generally applicable to complement cryo-EM study of many protein complexes to nanometer precision.


Assuntos
Subunidades Proteicas/química , RNA Polimerase II/química , RNA Polimerase II/genética , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/genética , Microscopia Crioeletrônica/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia Eletrônica/métodos , Modelos Moleculares , Subunidades Proteicas/genética , Transcrição Gênica/genética
8.
Proc Natl Acad Sci U S A ; 106(1): 127-32, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19109435

RESUMO

A simple genetic tag-based labeling method that permits specific attachment of a fluorescence probe near the C terminus of virtually any subunit of a protein complex is implemented. Its immediate application to yeast RNA polymerase II (pol II) enables us to test various hypotheses of RNA exit channel by using fluorescence resonance energy transfer (FRET) analysis. The donor dye is labeled on a site near subunit Rpb3 or Rpb4, and the acceptor dye is attached to the 5' end of RNA transcript in the pol II elongation complex. Both in-gel and single-molecule FRET analysis show that the growing RNA is leading toward Rpb4, not Rpb3, supporting the notion that RNA exits through the proposed channel 1. Distance constraints derived from our FRET results, in conjunction with triangulation, reveal the exit track of RNA transcript on core pol II by identifying amino acids in the vicinity of the 5' end of RNA and show that the extending RNA forms contacts with the Rpb7 subunit. The significance of RNA exit route in promoter escape and that in cotranscriptional mRNA processing is discussed.


Assuntos
Transferência Ressonante de Energia de Fluorescência , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Corantes Fluorescentes , Técnicas de Sonda Molecular , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
9.
Front Bioinform ; 1: 788308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303748

RESUMO

The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce "in solution" structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.

10.
J Inorg Biochem ; 225: 111602, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547604

RESUMO

In this focused review, we portray the recently reported 2.5 Å cyro-EM structure of the particulate methane monooxygenase (pMMO) from M. capsulatus (Bath). The structure of the functional holo-pMMO near atomic resolution has uncovered the sites of the copper cofactors including the location of the active site in the enzyme. The three coppers seen in the original X-ray crystal structures of the enzyme are now augmented by additional coppers in the transmembrane domain as well as in the water-exposed C-terminal subdomain of the PmoB subunit. The cryo-EM structure offers the first glimpse of the catalytic machinery capable of methane oxidation with high selectivity and efficiency. The findings are entirely consistent with the biochemical and biophysical findings previously reported in the literature, including the chemistry of hydrocarbon hydroxylation, regeneration of the catalyst for multiple turnovers, and the mechanism of aborting non-productive cycles to ensure kinetic competence.


Assuntos
Metano/química , Oxigenases/química , Biocatálise , Domínio Catalítico , Cobre/química , Hidroquinonas/química , Methylococcus capsulatus/enzimologia , NAD/química , Oxirredução , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Subunidades Proteicas/química , Ubiquinona/análogos & derivados , Ubiquinona/química
11.
Nat Commun ; 12(1): 3082, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035302

RESUMO

Splicing, a key step in the eukaryotic gene-expression pathway, converts precursor messenger RNA (pre-mRNA) into mRNA by excising introns and ligating exons. This task is accomplished by the spliceosome, a macromolecular machine that must undergo sequential conformational changes to establish its active site. Each of these major changes requires a dedicated DExD/H-box ATPase, but how these enzymes are activated remain obscure. Here we show that Prp28, a yeast DEAD-box ATPase, transiently interacts with the conserved 5' splice-site (5'SS) GU dinucleotide and makes splicing-dependent contacts with the U1 snRNP protein U1C, and U4/U6.U5 tri-snRNP proteins, Prp8, Brr2, and Snu114. We further show that Prp28's ATPase activity is potentiated by the phosphorylated Npl3, but not the unphosphorylated Npl3, thus suggesting a strategy for regulating DExD/H-box ATPases. We propose that Npl3 is a functional counterpart of the metazoan-specific Prp28 N-terminal region, which can be phosphorylated and serves as an anchor to human spliceosome.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease H/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
12.
Virus Genes ; 41(1): 73-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20446029

RESUMO

The virus-like particle (VLP) assembled from capsid subunits of the dragon grouper nervous necrosis virus (DGNNV) is very similar to its native T = 3 virion. In order to investigate the effects of four cysteine residues in the capsid polypeptide on the assembly/dissociation pathways of DGNNV virions, we recombinantly cloned mutant VLPs by mutating each cysteine to destroy the specific disulfide linkage as compared with thiol reduction to destroy all S-S bonds. The mutant VLPs of C187A and C331A mutations were similar to wild-type VLPs (WT-VLPs); hence, the effects of Cys187 and Cys331 on the particle formation and thermostability were presumably negligible. Electron microscopy showed that either C115A or C201A mutation disrupted de novo VLP formation significantly. As shown in micrographs and thermal decay curves, beta-mercaptoethanol-treated WT-VLPs remained intact, merely resulting in lower tolerance to thermal disruption than native WT-VLPs. This thiol reduction broke disulfide linkages inside the pre-fabricated VLPs, but it did not disrupt the appearance of icosahedrons. Small dissociated capsomers from EGTA-treated VLPs were able to reassemble back to icosahedrons in the presence of calcium ions, but additional treatment with beta-mercaptoethanol during EGTA dissociation resulted in inability of the capsomers to reassemble into the icosahedral form. These results indicated that Cys115 and Cys201 were essential for capsid formation of DGNNV icosahedron structure in de novo assembly and reassembly pathways, as well as for the thermal stability of pre-fabricated particles.


Assuntos
Nodaviridae/genética , Vírion/genética , Montagem de Vírus , Microscopia Crioeletrônica , Cisteína/genética , Cisteína/metabolismo , Mutação , Nodaviridae/fisiologia , Nodaviridae/ultraestrutura , Compostos de Sulfidrila/metabolismo , Temperatura , Vírion/metabolismo , Vírion/ultraestrutura
13.
Commun Biol ; 3(1): 508, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917929

RESUMO

2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this 2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC, we compare the performances with and without the pre-processor. Tests on multiple cryo-EM experimental datasets show the pre-processor can make classification faster, improve yield of good particles and increase the number of class-average images to generate better initial models. Testing on the nanodisc-embedded TRPV1 dataset with high heterogeneity using a 3D reconstruction workflow with an initial model from class-average images highlights the pre-processor improves the final resolution to 2.82 Å, close to 0.9 Nyquist. Those findings and analyses suggest the 2SDR pre-processor, of minimal cost, is widely applicable for boosting 2D classification, while its generalization to accommodate neural network de-noisers is envisioned.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Algoritmos , Humanos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Conformação Proteica , Canais de Cátion TRPV/química , Canais de Cátion TRPV/ultraestrutura
14.
Biomol NMR Assign ; 14(1): 63-66, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31848940

RESUMO

Nervous necrosis virus (NNV) is a non-enveloped virus that causes massive mortality in aquaculture fish production worldwide. Recently X-ray crystallography and single particle cryo-EM have independently determined the icosahedral capsid of NNV to near-atomic resolutions to show the capsid protein is composed of a S-domain (shell) and a P-domain (protrusion) connected by a linker. However, the structure of the spike on NNV capsid made of trimeric P-domains was poorly resolved by cryo-EM. In addition, comparing the spike in the cryo-EM with that by X-ray suggests that the P-domain can move drastically relative to the shell, implicating an underlying structural mechanism during the infectious process. Yet, it remains unclear that such structural re-arrangement is ascribed to the change of the conformation of individual P-domain or in the association among P-domains. Given that molecular structure of the P-domain in solution phase is still lacking, we aim to determine the structure of the P-domain by solution NMR spectroscopy. In this communication, we report backbone and side chain 1H, 13C and 15N chemical shifts of the P-domain (residues 221-338) together with the linker region (residues 214-220), revealing ten ß-strands via chemical shift propensity analysis. Our findings are consistent with the X-ray crystal structure of the P-domain reported elsewhere. The current study provides a framework towards further structural analyses of the P-domain in various solution conditions.


Assuntos
Proteínas do Capsídeo/química , Nodaviridae/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Domínios Proteicos , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
15.
J Electron Microsc (Tokyo) ; 58(3): 137-45, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19289850

RESUMO

A Boersch electrostatic phase plate (BEPP) used in a transmission electron microscope (TEM) system can provide tuneable phase shifts and overcome the low contrast problem for biological imaging. Theoretically, a pure phase image with a high phase contrast can be obtained using a BEPP. However, a currently available TEM system utilizing a BEPP cannot achieve sufficiently high phase efficiency for biological imaging, owing to the practical conditions. The low phase efficiency is a result of the blocking of partial unscattered electrons by BEPP, and the contribution of absorption contrast. The fraction of blocked unscattered beam is related to BEPP dimensions and to divergence of the illumination system of the TEM. These practical issues are discussed in this paper. Phase images of biological samples (negatively stained ferritin) obtained by utilizing a BEPP are reported, and the phase contrast was found to be enhanced by a factor of approximately 1.5, based on the calculation using the Rose contrast criterion. The low gain in phase contrast is consistent with the expectation from the current TEM/BEPP system. A new generation of phase TEM utilizing BEPP and designed for biological imaging with a high phase efficiency is proposed.


Assuntos
Ferritinas/ultraestrutura , Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/métodos , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Eletricidade Estática
16.
Res Microbiol ; 170(1): 13-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30077624

RESUMO

Vibrio parahaemolyticus is a human enteropathogenic bacterium and is also pathogenic to shrimp and finfish. In a search for a biocontrol agent for V. parahaemolyticus and other pathogenic Vibrio species, a lytic phage VP06 was isolated from oyster using V. parahaemolyticus as the host. VP06 is a Siphoviridae phage with a polyhedral head and a long tail. The genome sequence of VP06 was 75,893 nucleotides in length and the G + C content was 49%; a total of 101 CDSs were identified in VP06, of which 39 exhibited functional domains/motifs. The genomic sequence of VP06 is similar to those of a lytic Vibrio vulnificus phage SSP002 and a temperate V. parahaemolyticus phage vB_VpaS_MAR10, although VP06 has distinct features in the CDS arrangement and 14 unique CDSs. Phylogenetic analysis revealed that VP06, SSP002 and vB_VpaS_MAR10 belong to a novel genus cluster of Siphoviridae phages. This phage lysed 28.1% of various Vibrio strains, and the efficiency of plating method revealed that VP06 was highly effective in lysing strains of Vibrio alginolyticus, Vibrio azureus, Vibrio harveyi and V. parahaemolyticus. The properties of VP06, including its broad range of hosts and resistance to environmental stresses, indicate that it may be a candidate biocontrol agent.


Assuntos
Bacteriófagos/metabolismo , Siphoviridae/isolamento & purificação , Vibrio parahaemolyticus/virologia , Vírus/isolamento & purificação , Animais , Bacteriófagos/genética , Composição de Bases , Genoma Viral , Ostreidae/virologia , Filogenia , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/ultraestrutura , Vírus/classificação , Vírus/genética , Vírus/ultraestrutura
17.
Micron ; 39(6): 749-56, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18068372

RESUMO

An electrostatic phase plate can provide better phase contrast, a fact that plays a promising role for the high-resolution observation of specimens containing light elements. However, in order to quantify the "phase" contrast from images recorded using the phase plate, the "absorption" (or scattering) contrast arising from electrons scattered elastically and inelastically outside of the phase-plate ring must be analyzed. Angular distributions of the elastic and inelastic scattering are predicted using the Lenz model. The mean absorptive potential, V(o) serving as an index for the contribution of "absorption" contrast, is calculated from the reciprocal mean free path of elastic and inelastic scattering, and is verified experimentally. The mean absorptive potential of a particular phase plate with inner and outer radii of 0.25microm (theta(1)=0.09mrad) and 1mum (theta(2)=0.4mrad), respectively, is approximately 0.11eV for carbon and is equivalent to that of an objective aperture of semiangle 17mrad (cutoff frequency 6.7nm(-1)).


Assuntos
Microscopia Eletrônica de Varredura/métodos , Modelos Teóricos , Microscopia Eletrônica de Varredura/instrumentação , Microscopia de Contraste de Fase , Espalhamento de Radiação
18.
Vaccine ; 36(9): 1167-1173, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29398272

RESUMO

Although Enterovirus 71 (EV71) has only one serotype based on serum neutralization tests using hyperimmune animal antisera, three major genogroups (A, B and C) including eleven genotypes (A, B1-B2, and C1-C5) can be well classified based on phylogenetic analysis. Since 1997, large-scale EV71 epidemics occurred cyclically with different genotypes in the Asia-Pacific region. Therefore, development of EV71 vaccines is a national priority in several Asian countries. Currently, five vaccine candidates have been evaluated in clinical trials in China (three C4 candidates), Singapore (one B2 candidate), and Taiwan (one B4 candidate). Overall, the peak viral titers of these 5 vaccine candidates could only reach about 107 TCID50/mL. Moreover, genotypes of these 5 candidates are different from the current predominant genotype B5 in Taiwan and South-Eastern Asia. We adapted a high-growth EV71 genotype B5 (HG-B5) virus after multiple passages and plaque selections in Vero cells and the HG-B5 virus could reach high titers (>108 TCID50/mL) in a microcarrier-based cell culture system. The viral particles were further purified and formulated with alum adjuvant. After two doses of intramuscular immunization in rabbits, the HG-B5 vaccine candidate could induce cross-reactive neutralizing antibodies against the three major EV71 genogroups. In conclusion, a high-growth EV71 virus was successfully adapted in Vero cells and could induce broad spectrum neutralizing antibody titers against three (A, B5, and C4) genotypes in rabbits.


Assuntos
Anticorpos Neutralizantes/imunologia , Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/imunologia , Vacinas Virais/imunologia , Animais , Chlorocebus aethiops , Reações Cruzadas , Enterovirus Humano A/genética , Variação Genética , Imunogenicidade da Vacina/imunologia , Coelhos , Células Vero , Vírion/isolamento & purificação
19.
Nanoscale ; 10(6): 2820-2824, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29362758

RESUMO

Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Nanotubos/química , Estudos Transversais , Doxorrubicina , Elétrons , Lasers , Difração de Raios X
20.
Structure ; 10(8): 1117-25, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12176389

RESUMO

An 18 A resolution structure of the 12-subunit yeast RNA polymerase II (RNAPII) calculated from electron microscope images of single particles preserved in amorphous ice reveals the conformation of the enzyme in solution. The Rpb4/Rpb7 polymerase subunit complex was localized and found to be ideally positioned to determine the path of the nascent RNA transcript. The RNAPII structure suggests a revised mode of interaction with promoter DNA and demonstrates that regulation of RNAPII must involve structural changes that render the enzyme competent for initiation.


Assuntos
DNA/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/química , Leveduras/enzimologia , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA Fúngico , Humanos , Modelos Moleculares , Complexos Multienzimáticos , Subunidades Proteicas/química , RNA/genética , RNA/metabolismo , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA