Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(16): 7633-7641, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37558214

RESUMO

Assembling plasmonic nanocrystals in regular superlattices can produce effective optical properties not found in homogeneous materials. However, the range of these metamaterial properties is limited when a single nanocrystal composition is selected for the constituent meta-atoms. Here, we show how continuously varying doping at two length scales, the atomic and nanocrystal scales, enables tuning of both the frequency and bandwidth of the collective plasmon resonance in nanocrystal-based metasurfaces, while these features are inextricably linked in single-component superlattices. Varying the mixing ratio of indium tin oxide nanocrystals with different dopant concentrations, we use large-scale simulations to predict the emergence of a broad infrared spectral region with near-zero permittivity. Experimentally, tunable reflectance and absorption bands are observed, owing to in- and out-of-plane collective resonances. These spectral features and the predicted strong near-field enhancement establish this multiscale doping strategy as a powerful new approach to designing metamaterials for optical applications.

2.
J Am Chem Soc ; 145(36): 19655-19661, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643086

RESUMO

Most photochemistry occurs in the regime of weak light-matter coupling, in which a molecule absorbs a photon and then performs photochemistry from its excited state. In the strong coupling regime, enhanced light-matter interactions between an optical field and multiple molecules lead to collective hybrid light-matter states called polaritons. This strong coupling leads to fundamental changes in the nature of the excited states including multi-molecule delocalized excitations, modified potential energy surfaces, and dramatically altered energy levels relative to non-coupled molecules. The effect of strong light-matter coupling on covalent photochemistry has not been well explored. Photoswitches undergo reversible intramolecular photoreactions that can be readily monitored spectroscopically. In this work, we study the effect of strong light-matter coupling on the kinetics of photoswitching within optical cavities. Reproducing prior experiments, photoswitching of spiropyran/merocyanine photoswitches is decelerated in a cavity. Fulgide photoswitches, however, show the opposite effect, with strong coupling accelerating photoswitching. While modified merocyanine switching can be explained by changes in radiative decay rates or the amount of light in the cavity, modified fulgide switching kinetics suggest direct changes to excited-state reaction kinetics.

3.
Nat Mater ; 18(6): 620-626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011217

RESUMO

The reversible and cooperative activation process, which includes electron transfer from surrounding redox mediators, the reversible valence change of cofactors and macroscopic functional/structural change, is one of the most important characteristics of biological enzymes, and has frequently been used in the design of homogeneous catalysts. However, there are virtually no reports on industrially important heterogeneous catalysts with these enzyme-like characteristics. Here, we report on the design and synthesis of highly active TiO2 photocatalysts incorporating site-specific single copper atoms (Cu/TiO2) that exhibit a reversible and cooperative photoactivation process. Our atomic-level design and synthetic strategy provide a platform that facilitates valence control of co-catalyst copper atoms, reversible modulation of the macroscopic optoelectronic properties of TiO2 and enhancement of photocatalytic hydrogen generation activity, extending the boundaries of conventional heterogeneous catalysts.

4.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218825

RESUMO

There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm-2 and a Tafel slope of 120 mV dec-1 with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis.

5.
ACS Nano ; 18(1): 972-982, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117550

RESUMO

The ability to efficiently absorb light in ultrathin (subwavelength) layers is essential for modern electro-optic devices, including detectors, sensors, and nonlinear modulators. Tailoring these ultrathin films' spectral, spatial, and polarimetric properties is highly desirable for many, if not all, of the above applications. Doing so, however, often requires costly lithographic techniques or exotic materials, limiting scalability. Here we propose, demonstrate, and analyze a mid-infrared absorber architecture leveraging monolayer films of nanoplasmonic colloidal tin-doped indium oxide nanocrystals (ITO NCs). We fabricate a series of ITO NC monolayer films using the liquid-air interface method; by synthetically varying the Sn dopant concentration in the NCs, we achieve spectrally selective perfect absorption tunable between wavelengths of two and five micrometers. We achieve monolayer thickness-controlled coupling strength tuning by varying NC size, allowing access to different coupling regimes. Furthermore, we synthesize a bilayer film that enables broadband absorption covering the entire midwave IR region (λ = 3-5 µm). We demonstrate a scalable platform, with perfect absorption in monolayer films only hundredths of a wavelength in thickness, enabling strong light-matter interaction, with potential applications for molecular detection and ultrafast nonlinear optical applications.

6.
ACS Nano ; 16(3): 4408-4414, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35239309

RESUMO

Good's buffers can act both as nucleating and shape-directing agents during the synthesis of anisotropic gold nanostars (AuNS). Although different Good's buffers can produce AuNS shapes with branches that are oriented along specific crystallographic directions, the mechanism is not fully understood. This paper reports how an analysis of the intermediate structures during AuNS synthesis from HEPES, EPPS, and MOPS Good's buffers can provide insight into the formation of seedless AuNS. Electron tomography of AuNS structures quenched at early times (minutes) was used to characterize the morphology of the incipient seeds, and later times were used to construct the growth maps. Through this approach, we identified how the crystallinity and shape of the first structures synthesized with different Good's buffers determine the final AuNS morphologies.


Assuntos
Tomografia com Microscopia Eletrônica , Ouro , Soluções Tampão , Ouro/química , HEPES/química
7.
ACS Appl Mater Interfaces ; 12(32): 36523-36529, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32666788

RESUMO

The optical properties of colloidal quantum dots (QDs) are controllable through introduction of excess electrons or holes into their delocalized bands. Crucial to robust and energy-efficient electronic doping of QDs is suitable charge compensation. Compensation by surface modification and substitutional impurities are however not sufficiently controllable to enable effective doping of QDs. This article describes electrochemical n-type doping of CdSe QDs where injected electrons are compensated by interstitial Li+ to form LixCdSe, x ≤ 0.3. n-type degenerate doping reversibly decreases absorption into the lowest-energy excitonic state of the QD, activates intraband optical transitions, and shifts the photoluminescence of the QD to higher energy. This work establishes electrochemical interstitial doping as a reversible and highly controllable method for tuning the optical properties of colloidal QDs.

8.
Sci Rep ; 7(1): 12281, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947802

RESUMO

Photoelectrochemical (PEC) water splitting provides an attractive route for large-scale solar energy storage, but issues surrounding the efficiency and the stability of photoelectrode materials impose serious restrictions on its advancement. In order to relax one of the photoelectrode criteria, the band gap, a promising strategy involves complementing the conventional PEC setup with additional power sources. Here we introduce a new concept: solar water splitting combined with reverse electrodialysis (RED). RED is a membrane-based power generation technology that produces an electrochemical potential difference from a salinity gradient. In this study, the RED stack serves not only as a separator, but also as an additional tunable power source to compensate for the limited voltage produced by the photoelectrode. A hybrid system, composed of a single-junction p-Si and a RED stack, successfully enables solar water splitting without the need for an external bias. This system provides flexibility in photoelectrode material selection.

9.
ACS Omega ; 2(3): 1009-1018, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457482

RESUMO

The effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic-water electrolysis system. This allows key determinants of overall efficiency to be identified. On the basis of this model, 26.5% single-junction GaAs solar cell was combined with a membrane-electrode-assembled electrolysis cell (EC) using the dc/dc converting technology. As a result, we have achieved a solar-to-hydrogen conversion efficiency of 20.6% on a prototype scale and demonstrated light intensity tracking optimization to maintain high efficiency. We believe that this study will provide design principles for combining solar cells, ECs, and new catalysts and can be generalized to other solar conversion chemical devices while minimizing their power loss during the conversion of electrical energy into fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA