Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Physiol ; 190(1): 682-697, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35639954

RESUMO

Phosphorus (P) is a mineral nutrient essential for plant growth and development, but most P in the soil is unavailable for plants. To understand the genetic basis of P acquisition regulation, we performed genome-wide association studies (GWASs) on a diversity panel of Arabidopsis (Arabidopsis thaliana). Two primary determinants of P acquisition were considered, namely, phosphate (Pi)-uptake activity and PHOSPHATE TRANSPORTER 1 (PHT1) protein abundance. Association mapping revealed a shared significant peak on chromosome 5 (Chr5) where the PHT1;1/2/3 genes reside, suggesting a connection between the regulation of Pi-uptake activity and PHT1 protein abundance. Genes encoding transcription factors, kinases, and a metalloprotease associated with both traits were also identified. Conditional GWAS followed by statistical analysis of genotype-dependent PHT1;1 expression and transcriptional activity assays revealed an epistatic interaction between PHT1;1 and MYB DOMAIN PROTEIN 52 (MYB52) on Chr1. Further, analyses of F1 hybrids generated by crossing two subgroups of natural accessions carrying specific PHT1;1- and MYB52-associated single nucleotide polymorphisms (SNPs) revealed strong effects of these variants on PHT1;1 expression and Pi uptake activity. Notably, the soil P contents in Arabidopsis habitats coincided with PHT1;1 haplotype, emphasizing how fine-tuned P acquisition activity through natural variants allows environmental adaptation. This study sheds light on the complex regulation of P acquisition and offers a framework to systematically assess the effectiveness of GWAS approaches in the study of quantitative traits.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/genética , Solo
2.
J Exp Bot ; 74(8): 2556-2571, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36656734

RESUMO

The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.


Assuntos
Orchidaceae , Açúcares , Açúcares/metabolismo , Sacarose/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Pólen/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(8): 3300-3309, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30723146

RESUMO

The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Adaptação Fisiológica/genética , Anaerobiose/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Oryza/crescimento & desenvolvimento , Transdução de Sinais/genética , Especificidade por Substrato
4.
J Exp Bot ; 72(2): 525-541, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33063830

RESUMO

Polyacetylene compounds from Bidens pilosa are known to have several pharmacological activities. In this study, we identified major genes encoding enzymes involved in the biosynthesis of polyacetylene in B. pilosa. Seven polyacetylene metabolites present in B. pilosa leaves were induced by methyl jasmonate (MeJA) treatment and physical wounding. Transcriptome analysis via high-throughput sequencing revealed 39 202 annotated gene fragment sequences. A DNA microarray established by the 39 202 annotated genes was used to profile gene expression in B. pilosa leaf and root tissues. As no polyacetylene compounds were found in roots, the gene expression pattern in root tissue was used as a negative control. By subtracting MeJA-induced genes in roots, we obtained 1216 genes in leaves showing an approximate three-fold increase in expression post-MeJA treatment. Nine genes encoding enzymes with desaturation function were selected for confirmation of expression by qRT-PCR. Among them, two genes, BPTC030748 and BPTC012564, were predicted to encode Δ12-oleate desaturase (OD) and Δ12-fatty acid acetylenase (FAA), respectively. In B. pilosa leaves, RNAi knock-down concomitantly decreased, while virus-mediated transient overexpression of either gene elevated polyacetylene content. In summary, we demonstrate that two important enzymes, Δ12-oleate desaturase and Δ12-fatty acid acetylenase, involved in desaturation of linear fatty acid precursors play a role in polyacetylene biosynthesis in an important medicinal plant, Bidens pilosa.


Assuntos
Bidens , Plantas Medicinais , Bidens/genética , Vias Biossintéticas , Folhas de Planta , Polímero Poliacetilênico
5.
Ann Bot ; 123(1): 69-77, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113635

RESUMO

Background and Aims: Orchidaceae is a large plant family, and its extraordinary adaptations may have guaranteed its evolutionary success. Flavonoids are a group of secondary metabolites that mediate plant acclimation to challenge environments. Chalcone synthase (CHS) catalyses the initial step in the flavonoid biosynthetic pathway. This is the first chromosome-level investigation of the CHS gene family in Phalaenopsis aphrodite and was conducted to elucidate if divergence of this gene family is associated with chromosome evolution. Methods: Complete CHS genes were identified from our whole-genome sequencing data sets and their gene expression profiles were obtained from our transcriptomic data sets. Fluorescence in situ hybridization (FISH) was conducted to position five CHS genes to high-resolution pachytene chromosomes. Key Results: The five Phalaenopsis CHS genes can be classified into three groups, PaCHS1, PaCHS2 and the tandemly arrayed three-gene cluster, which diverged earlier than those of the orchid genera and species. Additionally, pachytene chromosome-based FISH mapping showed that the three groups of CHS genes are localized on three distinct chromosomes. Moreover, an expression analysis of RNA sequencing revealed that the five CHS genes had highly differentiated expression patterns and its expression pattern-based clustering showed high correlations between sequence divergences and chromosomal localizations of the CHS gene family in P. aphrodite. Conclusions: Based on their phylogenetic relationships, expression clustering analysis and chromosomal distributions of the five paralogous PaCHS genes, we proposed that expansion of this gene family in P. aphrodite occurred through segmental duplications, followed by tandem duplications. These findings provide information for further studies of CHS functions and regulations, and shed light on the divergence of an important gene family in orchids.


Assuntos
Aciltransferases/genética , Duplicação Cromossômica , Evolução Molecular , Orchidaceae/genética , Proteínas de Plantas/genética , Aciltransferases/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo
6.
Plant Biotechnol J ; 16(12): 2027-2041, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29704444

RESUMO

The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta/genética , Orchidaceae/genética , Melhoramento Vegetal/métodos , Adaptação Fisiológica/genética , Genoma de Planta/fisiologia , Cariotipagem
7.
Plant Cell Physiol ; 58(1): e9, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111366

RESUMO

Orchidaceae, the orchid family, encompasses more than 25,000 species and five subfamilies. Due to their beautiful and exotic flowers, distinct biological and ecological features, orchids have aroused wide interest among both researchers and the general public. We constructed the Orchidstra database, a resource for orchid transcriptome assembly and gene annotations. The Orchistra database has been under active development since 2013. To accommodate the increasing amount of orchid transcriptome data and house more comprehensive information, Orchidstra 2.0 has been built with a new database system to store the annotations of 510,947 protein-coding genes and 161,826 noncoding transcripts, covering 18 orchid species belonging to 12 genera in five subfamilies of Orchidaceae. We have improved the N50 size of protein-coding genes, provided new functional annotations (including protein-coding gene annotations, protein domain/family information, pathways analysis, Gene Ontology term assignments, orthologous genes across orchid species, cross-links to the database of model species, and miRNA information), and improved the user interface with better website performance. We also provide new database functionalities for database searching and sequence retrieval. Moreover, the Orchidstra 2.0 database incorporates detailed RNA-Seq gene expression data from various tissues and developmental stages in different orchid species. The database will be useful for gene prediction and gene family studies, and for exploring gene expression in orchid species. The Orchidstra 2.0 database is freely accessible at http://orchidstra2.abrc.sinica.edu.tw.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Biologia Computacional/métodos , Ontologia Genética , Internet , Orchidaceae/classificação , Orchidaceae/genética , Proteínas de Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Especificidade da Espécie
8.
Plant Mol Biol ; 84(4-5): 529-48, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24173913

RESUMO

Orchids display unique phenotypes, functional characteristics and ecological adaptations that are not found in model plants. In this study, we aimed to characterize the microRNA (miRNA) transcriptome and identify species- and tissue-specific miRNAs in Phalaenopsis aphrodite. After data filtering and cleanup, a total of 59,387,374 reads, representing 1,649,996 unique reads, were obtained from four P. aphrodite small RNA libraries. A systematic bioinformatics analysis pipeline was developed that can be used for miRNA and precursor mining, and target gene prediction in non-model plants. A total of 3,251 unique reads for 181 known plant miRNAs (belonging to 88 miRNA families), 23 new miRNAs and 91 precursors were identified. All the miRNA star sequences (miRNA*), the complementary strands of miRNA that from miRNA/miRNA* duplexes, of the predicted new miRNAs were detected in our small RNA libraries, providing additional evidence for their existence as new miRNAs in P. aphrodite. Furthermore, 240 potential miRNA-targets that appear to be involved in many different biological activities and molecular functions, especially transcription factors, were identified, suggesting that miRNAs can impact multiple processes in P. aphrodite. We also verified the cleavage sites for six targets using RNA ligase-mediated rapid amplification of 5' ends assay. The results provide valuable information about the composition, expression and function of miRNA in P. aphrodite, and will aid functional genomics studies of orchids.


Assuntos
MicroRNAs/genética , Orchidaceae/genética , RNA de Plantas/genética , Transcriptoma , Sequência de Bases , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Precursores de RNA/genética , RNA de Plantas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
9.
Plant Cell Physiol ; 54(2): e11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324169

RESUMO

A specialized orchid database, named Orchidstra (URL: http://orchidstra.abrc.sinica.edu.tw), has been constructed to collect, annotate and share genomic information for orchid functional genomics studies. The Orchidaceae is a large family of Angiosperms that exhibits extraordinary biodiversity in terms of both the number of species and their distribution worldwide. Orchids exhibit many unique biological features; however, investigation of these traits is currently constrained due to the limited availability of genomic information. Transcriptome information for five orchid species and one commercial hybrid has been included in the Orchidstra database. Altogether, these comprise >380,000 non-redundant orchid transcript sequences, of which >110,000 are protein-coding genes. Sequences from the transcriptome shotgun assembly (TSA) were obtained either from output reads from next-generation sequencing technologies assembled into contigs, or from conventional cDNA library approaches. An annotation pipeline using Gene Ontology, KEGG and Pfam was built to assign gene descriptions and functional annotation to protein-coding genes. Deep sequencing of small RNA was also performed for Phalaenopsis aphrodite to search for microRNAs (miRNAs), extending the information archived for this species to miRNA annotation, precursors and putative target genes. The P. aphrodite transcriptome information was further used to design probes for an oligonucleotide microarray, and expression profiling analysis was carried out. The intensities of hybridized probes derived from microarray assays of various tissues were incorporated into the database as part of the functional evidence. In the future, the content of the Orchidstra database will be expanded with transcriptome data and genomic information from more orchid species.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Orchidaceae/genética , RNA de Plantas/análise , Sondas de DNA , Perfilação da Expressão Gênica/métodos , Internet , MicroRNAs/genética , Anotação de Sequência Molecular , Orchidaceae/classificação , Filogenia , RNA de Plantas/genética , Transcriptoma
10.
Front Microbiol ; 13: 818291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154058

RESUMO

Colletotrichum scovillei causes anthracnose of chili pepper in many countries. Three strains of this pathogen, Coll-524, Coll-153, and Coll-365, show varied virulence on chili pepper. Among the three strains, Coll-365 showed significant defects in growth and virulence. To decipher the genetic variations among these strains and identify genes contributing to growth and virulence, comparative genomic analysis and gene transformation to show gene function were applied in this study. Compared to Coll-524, Coll-153, and Coll-365 had numerous gene losses including 32 candidate effector genes that are mainly exist in acutatum species complex. A cluster of 14 genes in a 34-kb genomic fragment was lost in Coll-365. Through gene transformation, three genes in the 34-kb fragment were identified to have functions in growth and/or virulence of C. scovillei. CsPLAA encoding a phospholipase A2-activating protein enhanced the growth of Coll-365. A combination of CsPLAA with one transcription factor CsBZTF and one C6 zinc finger domain-containing protein CsCZCP was found to enhance the pathogenicity of Coll-365. Introduction of CsGIP, which encodes a hypothetical protein, into Coll-365 caused a reduction in the germination rate of Coll-365. In conclusion, the highest virulent strain Coll-524 had more genes and encoded more pathogenicity related proteins and transposable elements than the other two strains, which may contribute to the high virulence of Coll-524. In addition, the absence of the 34-kb fragment plays a critical role in the defects of growth and virulence of strain Coll-365.

11.
Plant Cell Physiol ; 52(9): 1501-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21771864

RESUMO

Being one of the largest families in the angiosperms, Orchidaceae display a great biodiversity resulting from adaptation to diverse habitats. Genomic information on orchids is rather limited, despite their unique and interesting biological features, thus impeding advanced molecular research. Here we report a strategy to integrate sequence outputs of the moth orchid, Phalaenopsis aphrodite, from two high-throughput sequencing platform technologies, Roche 454 and Illumina/Solexa, in order to maximize assembly efficiency. Tissues collected for cDNA library preparation included a wide range of vegetative and reproductive tissues. We also designed an effective workflow for annotation and functional analysis. After assembly and trimming processes, 233,823 unique sequences were obtained. Among them, 42,590 contigs averaging 875 bp in length were annotated to protein-coding genes, of which 7,263 coding genes were found to be nearly full length. The sequence accuracy of the assembled contigs was validated to be as high as 99.9%. Genes with tissue-specific expression were also categorized by profiling analysis with RNA-Seq. Gene products targeted to specific subcellular localizations were identified by their annotations. We concluded that, with proper assembly to combine outputs of next-generation sequencing platforms, transcriptome information can be enriched in gene discovery, functional annotation and expression profiling of a non-model organism.


Assuntos
Perfilação da Expressão Gênica/métodos , Orchidaceae/genética , Transcriptoma , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Bases de Dados Genéticas , Biblioteca Gênica , Anotação de Sequência Molecular , Análise de Sequência de DNA/métodos
12.
Clin Chim Acta ; 378(1-2): 136-41, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17188257

RESUMO

BACKGROUND: Hypothetic mechanism of the individual vulnerability to oxidative stress through metabolism of environmental xenobiotics and genotypic polymorphisms has been considered to promote the development of Parkinson's disease (PD). In this case-control study, we determined the role of manganese-containing superoxide dismutase (MnSOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1) genes in PD risk in a population with high prevalence of pesticide exposure. METHODS: From southwestern region of Taiwan, we enrolled 153 patients with idiopathic PD and 155 healthy control subjects matched for age, sex and origin. Detailed questionnaires of face-to-face interviews among these subjects were collected. PCR-based restriction fragment length polymorphism (RFLP) assays were used to determine the genotypes of MnSOD (-9 T>C) and NQO1 (609 C>T) genes. RESULTS: Exposure to pesticides associated with PD was significant among patients with an increased odds ratio (OR) of 1.69 (95%CI, 1.07-2.65), and this association remained significant after adjustment for age, sex, and cigarette smoking (aOR=1.68, 95%CI, 1.03-2.76, P=0.023). Considering genetic factors, there were no significant differences in frequencies of both genotypes of MnSOD and NQO1 polymorphisms between PD patients and the control subjects (P>0.05). However, this difference in genotype distribution was significant among subjects who had been exposed to pesticide, with aOR of 2.49 (95%CI, 1.18-5.26, P=0.0072) for MnSOD C allele and aOR of 2.42 (95%CI, 1.16-4.76, P=0.0089) for NQO1 T allele, respectively. Moreover, among subjects exposed to pesticide, the combined MnSOD/NQO1 variant genotype was significantly associated with a 4.09-fold increased risk of PD (95%CI, 1.34-10.64, P=0.0052). CONCLUSION: Susceptible variants of MnSOD and NQO1 genes may interact with occupational pesticide exposure to increase PD risk in southwestern Taiwanese.


Assuntos
NAD(P)H Desidrogenase (Quinona)/genética , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Polimorfismo Genético , Superóxido Dismutase/genética , Idoso , Estudos de Casos e Controles , Exposição Ambiental , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio , Risco
13.
Gene ; 518(1): 159-63, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23237780

RESUMO

Correct classification and prediction of tumor cells is essential for a successful diagnosis and reliable future treatment. In this study, we aimed at using genetic algorithms for feature selection and proposed silhouette statistics as a discriminant function to distinguish between six subtypes of pediatric acute lymphoblastic leukemia by using microarray with thousands of gene expressions. Our methods have shown a better classification accuracy than previously published methods and obtained a set of genes effective to discriminate subtypes of pediatric acute lymphoblastic leukemia. Furthermore, the use of silhouette statistics, offering the advantages of measuring the classification quality by a graphical display and by an average silhouette width, has also demonstrated feasibility and novelty for more difficult multiclass tumor prediction problems.


Assuntos
Algoritmos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Análise Discriminante , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos
14.
PLoS One ; 8(11): e80462, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265826

RESUMO

Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel roles for the transcription factors involved in floral organ pattern formation. Phalaenopsis orchid floral organ-specific genes were identified by microarray analysis. Several critical transcription factors including AP3, PI, AP1 and AGL6, displayed distinct spatial distribution patterns. Phylogenetic analysis of orchid MADS box genes was conducted to infer the evolutionary relationship among floral organ-specific genes. The results suggest that gene duplication MADS box genes in orchid may have resulted in their gaining novel functions during evolution. Based on these analyses, a modified model of orchid flowering was proposed. Comparison of the expression profiles of flowers of a peloric mutant and wild-type Phalaenopsis orchid further identified genes associated with lip morphology and peloric effects. Large scale investigation of gene expression profiles revealed that homeotic genes from the ABCDE model of flower development classes A and B in the Phalaenopsis orchid have novel functions due to evolutionary diversification, and display differential expression patterns.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Orchidaceae/genética , Transcriptoma , Análise por Conglomerados , Proteínas de Domínio MADS/genética , Família Multigênica , Mutação , Orchidaceae/classificação , Especificidade de Órgãos/genética , Fenótipo , Filogenia , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA