Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 110(1): 105-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288381

RESUMO

In order to improve water and oxygen barrier properties, the surface of two commercial medical grade polyurethane (PU) membranes (Chronoflex® AR-LT and Bionate® II) was modified by a spray deposited film of poly(ethylene-co-vinyl alcohol) (EVOH). The influence of the temperature, the deposited layer thickness and the EVOH ethylene group percentage (27%, 32%, and 44% for EVOH27, EVOH32, and EVOH44, respectively) on the barrier properties of the PU/EVOH multilayered membranes was investigated. The increase of the EVOH layer thickness leads to higher oxygen barrier properties (the highest barrier improvement factor of 412 was obtained). However, in case of the deposited layer thickness higher than 18 µm, microcracks appeared on the treated surface promote a significant loss of the barrier effect. Due to its higher crystallinity degree, EVOH27 provides a higher oxygen barrier effect compared to EVOH32 and EVOH44. On the contrary, an increase of the water barrier properties was observed with the increase of the percentage of ethylene groups. Moreover, the delamination of the EVOH layer was noted after water permeation, especially in case of EVOH44, which is the most hydrophobic layer. Nevertheless, significant decrease of the water and oxygen permeability of the modified PU membranes was achieved, thus showing the benefit of using the EVOH spray deposition for the biomedical application, which requires high performance material with flexible and barrier properties.


Assuntos
Embalagem de Alimentos , Água , Oxigênio/química , Poliuretanos , Polivinil/química
2.
Polymers (Basel) ; 13(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771259

RESUMO

In this work, the design and characterization of new supported ionic liquid membranes, as medium-temperature polymer electrolyte membranes for fuel-cell application, are described. These membranes were elaborated by the impregnation of porous polyimide Matrimid® with different synthesized protic ionic liquids containing polymerizable vinyl, allyl, or methacrylate groups. The ionic liquid polymerization was optimized in terms of the nature of the used (photo)initiator, its quantity, and reaction duration. The mechanical and thermal properties, as well as the proton conductivities of the supported ionic liquid membranes were analyzed in dynamic and static modes, as a function of the chemical structure of the protic ionic liquid. The obtained membranes were found to be flexible with Young's modulus and elongation at break values were equal to 1371 MPa and 271%, respectively. Besides, these membranes exhibited high thermal stability with initial decomposition temperatures > 300 °C. In addition, the resulting supported membranes possessed good proton conductivity over a wide temperature range (from 30 to 150 °C). For example, the three-component Matrimid®/vinylimidazolium/polyvinylimidazolium trifluoromethane sulfonate membrane showed the highest proton conductivity-~5 × 10-2 mS/cm and ~0.1 mS/cm at 100 °C and 150 °C, respectively. This result makes the obtained membranes attractive for medium-temperature fuel-cell application.

3.
Polymers (Basel) ; 12(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872455

RESUMO

A new type of hybrid polymeric-based film containing 1-(1,3-diethoxy-1,3-dioxopropan-2-ylo)-3-methylimidazolium bromide (RIL1_Br) and 1-(2-etoxy-2-oxoethyl)-3-methylimidazolium bromide (RIL2_Br) reactive ionic liquids was elaborated. Poly(vinyl alcohol) (PVA)-based films with 9-33 wt % of RILs were subsequently characterized using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and TGA-FTIR. PVA-RIL films were also studied in tensile tests, contact angle and sorption measurements. RIL incorporation enhanced thermal and mechanical stability of PVA membranes due to the hydrogen bonds between RILs and polymer chains. Membrane swelling behavior in water (H2O), ethanol (EtOH), and propan-2-ol (IPA) and the kinetics of water sorption process revealed that PVA-RILs membranes possess the highest affinity towards water. It was pointed out that both the RIL type and the RIL amount in the polymer matrix have significant influence on the membrane swelling behavior and the water sorption kinetics.

4.
J Phys Chem B ; 113(11): 3445-52, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19235991

RESUMO

The permeation properties of a semiaromatic polyamide, the poly(m-xylene adipamide) (MXD6), were investigated by water and carbon dioxide permeation experiments (pervaporation and gas permeation tests). Complementary microstructure informations were obtained from calorimetric measurements. Amorphous and semicrystalline MXD6 membranes were studied. The analysis of the water flux through amorphous MXD6 membranes showed a plasticization phenomenon followed by a water-induced crystallization. It resulted that the role played by water in these materials was complex because of the dependence of the water diffusivity on water concentration and time. Because of the presence of crystalline phase, a significant reduction of water and gas permeability of MXD6 and an increase in the delay of diffusion were observed. In terms of barrier properties for water and carbon dioxyde, MXD6 membrane crystallized at high temperature were more performant than water-induced crystallized ones. Correlations between microstructure and transport properties had been so established.

5.
J Phys Chem B ; 112(39): 12338-46, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18774845

RESUMO

Polymer electrolytes, using a poly(epichlorhydrin-allyl glycidyl ether) copolymer as matrix, are shown to perform well in alkaline fuel cell electrolyte. An anion-conducting network is obtained by the incorporation of cyclic diamines, 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1-azabicyclo[2.2.2]octane (quinuclidine). The physicochemical and electrochemical characteristics are evaluated. The best conductivity of 1.3.10 (-2) S/cm is obtained at 60 degrees C and a relative humidity of RH = 98%. Ionic conductivity is particularly sensitive to relative humidity. To gain insight into the OH (-) conduction mechanism and the role of water, sorption measurements versus water activity, differential scanning calorimetry, and NMR measurements are carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA