Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382433

RESUMO

Microplastics (MP) which are tiny plastic particles of sizes range from 1 µm (µm) to 5 mm (mm), have become a growing cause of concern due to their widespread presence in the environment and their potential impacts on ecosystems and human health. Marine organisms have the potential to consume microplastics, which could lead to physical injuries, blockages, or the transfer of harmful substances up the food chain. Humans may indirectly consume microplastics through contaminated seafood and water, although the complete scope of health risks is currently under investigation. An essential step in gaining a comprehensive understanding of microplastic pollution in waterbodies is the identification of microplastics, which is also crucial for further development of effective environmental regulations to address its adverse impacts. Majority of the researchers are accomplishing it globally using commercial platforms based on Raman spectroscopy. However, the development of indigenous Raman systems, which can enable microplastic identification, particularly in developing nations, is the need of the hour due to the outrageous cost of commercial platforms. In the current study, a custom-designed micro-Raman spectroscopy system was developed to detect and characterize microplastics from waterbodies. The developed system enabled visualization, size measurement and characterization of microplastics. Experimental parameters were fine-tuned, and a standardized Raman database was established for each type of plastic. This system exhibited high resolution which was capable of analysing microparticles of size up to 5 µm. Principal component analysis was carried out on the experimental Raman data, demonstrating good classification amongst different kinds of plastics. The performance of the developed system in analysing real samples was evaluated through experiments conducted on water samples obtained from the shore of Malpe Beach in Udupi district. The results revealed the presence of polyethylene and polyethylene terephthalate in the samples, along with the detection of pigments like copper phthalocyanine and indigo blue.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/química , Ecossistema , Análise Espectral Raman , Água/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Radiat Prot Dosimetry ; 200(11-12): 1047-1051, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016479

RESUMO

The assessment of 210Po in agricultural soil matrices in different regions of Kerala and Karnataka was studied. The wet ash method was used to find the activity concentration of 210Po. The alpha activity was counted using a silver-activated zinc sulfide counter of 30% efficiency, and the activity was calculated. The average concentration of 210Po activity in soil samples ranged from 0.09 to 20.52 Bq kg-1, with an average value of 4.47 Bq kg-1. The soil texture was measured using the International Pipette method. Using the IBM Statistical Package of Social Science Software, the frequency distribution curve of 210Po is plotted and found to be lognormal. The data of 210Po are highly skewed, and the Kurtosis has a significant positive value. The 210Po activity concentrations are substantially within the World Health Organization's recommended limits.


Assuntos
Agricultura , Polônio , Monitoramento de Radiação , Poluentes Radioativos do Solo , Solo , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Solo/química , Polônio/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA