Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(3): 1369-1376, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355449

RESUMO

Recent development in fluorescence-based molecular tools has contributed significantly to developmental studies, including embryogenesis. Many of these tools rely on multiple steps of sample manipulation, so obtaining large sample sizes presents a major challenge as it can be labor-intensive and time-consuming. However, large sample sizes are required to uncover critical aspects of embryogenesis, for example, subtle phenotypic differences or gene expression dynamics. This problem is particularly relevant for single-molecule fluorescence in situ hybridization (smFISH) studies in Caenorhabditis elegans embryogenesis. Microfluidics can help address this issue by allowing a large number of samples and parallelization of experiments. However, performing efficient reagent exchange on chip for large numbers of embryos remains a bottleneck. Here, we present a microfluidic pipeline for large-scale smFISH imaging of C. elegans embryos with minimized labor. We designed embryo traps and engineered a protocol allowing for efficient chemical exchange for hundreds of C. elegans embryos simultaneously. Furthermore, the device design and small footprint optimize imaging throughput by facilitating spatial registration and enabling minimal user input. We conducted the smFISH protocol on chip and demonstrated that image quality is preserved. With one device replacing the equivalent of 10 glass slides of embryos mounted manually, our microfluidic approach greatly increases throughput. Finally, to highlight the capability of our platform to perform longitudinal studies with high temporal resolution, we conducted a temporal analysis of par-1 gene expression in early C. elegans embryos. The method demonstrated here paves the way for systematic high-temporal-resolution studies that will benefit large-scale RNAi and drug screens and in systems beyond C. elegans embryos.


Assuntos
Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Hibridização in Situ Fluorescente , Animais , Caenorhabditis elegans/embriologia , Embrião não Mamífero
2.
Anal Bioanal Chem ; 411(12): 2729-2741, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30854596

RESUMO

Cell-penetrating peptides (CPPs) have garnered significant attention as a method to introduce reporters and therapeutics into intact cells. While numerous studies have been performed identifying new CPP sequences, relatively little is known about their uptake efficiency at the single-cell level. Here, a droplet microfluidic trapping array was used to characterize CPP uptake across a population of single intact cells. The microfluidic device allowed for facile and rapid isolation and analysis of single-cell fluorescence in a 787-member overhead trapping array with > 99% droplet trapping efficiency. The permeability efficiencies of four different CPPs were studied and compared in HeLa cells. Population analysis was performed using linkage hierarchical cluster analysis by R programming to bin cells into subpopulations expressing very low to very high peptide uptake efficiencies. CPP uptake was observed to be heterogeneous across the population of cells with peptide concentration and sequence both playing important roles in the diversity of CPP uptake, the overall peptide uptake efficiency, and the intracellular homogeneity of peptide distribution. This microfluidic-based analytical approach finds application in personalized medicine and provides new insight in the heterogeneity of CPP uptake which has the potential to affect both biosensor and drug internalization in intact cells. Graphical abstract .


Assuntos
Peptídeos Penetradores de Células/metabolismo , Microfluídica , Permeabilidade da Membrana Celular , Tamanho Celular , Análise por Conglomerados , Endocitose , Células HeLa , Humanos , Microscopia de Fluorescência , Análise de Célula Única
3.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645145

RESUMO

Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable 3D architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution imaging of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.

4.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35903776

RESUMO

Wild C. elegans strains harbor natural variation in developmental pathways, but investigating these differences requires precise and well-powered phenotyping methods. Here we employ a microfluidics platform for single-molecule FISH to simultaneously visualize the transcripts of three genes in embryos of two distinct strains. We capture transcripts at high resolution by developmental stage in over one hundred embryos of each strain and observe wide-scale conservation of expression, but subtle differences in par-2 and chin-1 abundance and rate of change. As both genes reside in a genomic interval of hyper-divergence, these results may reflect consequences of pathway evolution over long timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA