Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(6): 2191-2205, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881904

RESUMO

Galvanic vestibular stimulation (GVS) is used to assess vestibular system function, but vestibulospinal responses can exhibit variability depending on protocols or intensities used. Here, we measured head acceleration in healthy subjects to identify an objective motor threshold on which to base GVS intensity when assessing standing postural responses. Thirteen healthy right-handed subjects stood on a force platform, eyes closed, and head facing forward. An accelerometer was placed on the vertex to detect head acceleration, and electromyography activity of the right soleus was recorded. GVS (200 ms; current steps 0.5, from 1 mA to 4 mA) was applied in a binaural and bipolar configuration. 1) GVS induced a biphasic accelerometer response at a latency of 15 ms. Based on response amplitude, we constructed a recruitment curve for all participants and determined the motor threshold. In parallel, the method of limits was used to devise a more rapid approach to determine motor threshold. 2) We observed significant differences between motor threshold based on a recruitment curve and all perceptual thresholds reported either by the subject (sensation of movement) or a standing experimenter observing the participant (perception of movement). No significant difference was observed between the motor threshold based on the method of limits and perceptual thresholds of movement. 3) Using orthogonal polynomial contrasts, we observed a linear progression between multiples of the objective motor threshold (0.5, 0.75, 1, 1.5× motor threshold) and the 95% confidence ellipse area, the first peak of center of pressure displacement velocity, and the short and medium latency responses in the soleus. Hence, an objective motor threshold for GVS based on head acceleration was identified in standing participants and a recruitment curve could be constructed for all participants. These novel approaches could enable better understanding of changes in the vestibular system in different conditions or over time.NEW & NOTEWORTHY Galvanic vestibular stimulation (GVS) has been used to assess the vestibular system, but the significant interindividual variability in the responses makes it difficult to quantitatively compare them between individuals or conditions. Using an accelerometer to quantify head movement induced by GVS, we were able to determine an objective motor threshold and construct a recruitment curve for all participants. These methods could help assess changes in the vestibular system under different conditions.


Assuntos
Movimentos da Cabeça/fisiologia , Músculo Esquelético/fisiologia , Posição Ortostática , Sistema Vestibular/fisiologia , Acelerometria , Adulto , Estimulação Elétrica/métodos , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
2.
Forensic Sci Int Synerg ; 6: 100308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632193

RESUMO

This section contains an overview of publications relevant to advances in scientific methods and general discussions concerning shoe and toolmark examiners, which were published between January 2019 and May of 2022 and is the sequel to the review for the 19th Interpol International Forensic Science Managers Symposium in 2019 by Martin Baiker-Sorensen. A literature search was conducted covering relevant articles published in the main forensic journals.

3.
Front Neural Circuits ; 16: 1065647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845254

RESUMO

Locomotion requires the complex involvement of the spinal and supraspinal systems. So far, the role of vestibular input in gait has been assessed mainly with respect to gait stability. The noninvasive technique of galvanic vestibular stimulation (GVS) has been reported to decrease gait variability and increase gait speed, but the extent of its effect on spatiotemporal gait parameters is not fully known. Objective: Characterize vestibular responses during gait and determine the influence of GVS on cycle duration in healthy young participants. Methods: Fifteen right-handed individuals participated in the study. Electromyography (EMG) recordings of the bilateral soleus (SOL) and tibialis anterior muscles (TA) were performed. First, to determine stimulation intensity, an accelerometer placed on the vertex recorded the amplitude of the head tilts evoked by the GVS (1-4 mA, 200 ms) to establish a motor threshold (T). Second, while participants walked on a treadmill, GVS was applied at the onset of the stance phase during the treadmill gait with an intensity of 1 and 1.5 T with the cathode behind the right (RCathode) or left ear (LCathode). EMG traces were rectified, averaged (n = 30 stimuli), and analyzed. Latency, duration, and amplitude of vestibular responses as well as the mean duration of the gait cycles were measured. Results: GVS mainly induced long-latency responses in the right SOL, right TA and left TA. Only short-latency responses were triggered in the left SOL. Responses in the right SOL, left SOL and left TA were polarity dependent, being facilitatory with RCathode and inhibitory with LCathode, whereas responses in the right TA remained facilitatory regardless of the polarity. With the RCathode configuration, the stimulated cycle was prolonged compared with the control cycle at both 1 and 1.5 T, due to prolonged left SOL and TA EMG bursts, but no change was observed in right SOL and TA. With LCathode, GVS did not modify the cycle duration. Conclusion: During gait, a brief, low-intensity GVS pulse delivered at the right stance onset induced mainly long-latency polarity-dependent responses. Furthermore, a RCathode configuration increased the duration of the stimulated gait cycle by prolonging EMG activity on the anodic side. A similar approach could be explored to influence gait symmetry in individuals with neurological impairment.


Assuntos
Músculo Esquelético , Vestíbulo do Labirinto , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Marcha/fisiologia , Locomoção , Estimulação Elétrica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA