Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 142 Suppl 2: 73-81, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28382676

RESUMO

Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Hidrolases de Éster Carboxílico/genética , Inibidores da Colinesterase/farmacologia , Colinesterases/genética , Mapeamento Cromossômico , Amplificação de Genes/efeitos dos fármacos , Animais , Colinesterases/metabolismo , Mapeamento Cromossômico/métodos , Amplificação de Genes/fisiologia , Genômica , Humanos
2.
Proteins ; 83(6): 1005-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25820941

RESUMO

As the volume of data relating to proteins increases, researchers rely more and more on the analysis of published data, thus increasing the importance of good access to these data that vary from the supplemental material of individual articles, all the way to major reference databases with professional staff and long-term funding. Specialist protein resources fill an important middle ground, providing interactive web interfaces to their databases for a focused topic or family of proteins, using specialized approaches that are not feasible in the major reference databases. Many are labors of love, run by a single lab with little or no dedicated funding and there are many challenges to building and maintaining them. This perspective arose from a meeting of several specialist protein resources and major reference databases held at the Wellcome Trust Genome Campus (Cambridge, UK) on August 11 and 12, 2014. During this meeting some common key challenges involved in creating and maintaining such resources were discussed, along with various approaches to address them. In laying out these challenges, we aim to inform users about how these issues impact our resources and illustrate ways in which our working together could enhance their accuracy, currency, and overall value.


Assuntos
Bases de Dados de Proteínas/normas , Anotação de Sequência Molecular , Proteínas , Curadoria de Dados
3.
Nucleic Acids Res ; 41(Database issue): D423-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193256

RESUMO

The ESTHER database, which is freely available via a web server (http://bioweb.ensam.inra.fr/esther) and is widely used, is dedicated to proteins with an α/ß-hydrolase fold, and it currently contains >30 000 manually curated proteins. Herein, we report those substantial changes towards improvement that we have made to improve ESTHER during the past 8 years since our 2004 update. In particular, we generated 87 new families and increased the coverage of the UniProt Knowledgebase (UniProtKB). We also renewed the ESTHER website and added new visualization tools, such as the Overall Table and the Family Tree. We also address two topics of particular interest to the ESTHER users. First, we explain how the different enzyme classifications (bacterial lipases, peptidases, carboxylesterases) used by different communities of users are combined in ESTHER. Second, we discuss how variations of core architecture or in predicted active site residues result in a more precise clustering of families, and whether this strategy provides trustable hints to identify enzyme-like proteins with no catalytic activity.


Assuntos
Bases de Dados de Proteínas , Hidrolases/química , Hidrolases/classificação , Bactérias/enzimologia , Domínio Catalítico , Esterases/química , Esterases/classificação , Internet , Lipase/química , Lipase/classificação , Dobramento de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/classificação , Software , Tioléster Hidrolases/química , Tioléster Hidrolases/classificação
4.
CNS Neurosci Ther ; 30(6): e14814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887858

RESUMO

AIMS: Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-ß (Aß) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS: We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aß25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS: When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aß25-35-treated mice. When injected once a day over 7 days, it prevented Aß25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aß25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aß1-42 level in the hippocampus induced by Aß25-35. CONCLUSION: UW-MD-95 appeared as a potent neuroprotective compound in the Aß25-35 model of AD, with potentially an impact on Aß1-42 accumulation that could suggest a novel mechanism of neuroprotection.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Butirilcolinesterase , Inibidores da Colinesterase , Modelos Animais de Doenças , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Animais , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Camundongos , Fragmentos de Peptídeos/toxicidade , Masculino , Inibidores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos
5.
Chem Biol Interact ; 383: 110671, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37582413

RESUMO

The ESTHER database, dedicated to ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (https://bioweb.supagro.inra.fr/ESTHER/general?what=index), offers online access to a continuously updated, sequence-based classification of proteins harboring the alpha/beta hydrolase fold into families and subfamilies. In particular, the database proposes links to the sequences, structures, ligands and huge diversity of functions of these proteins, and to the related literature and other databases. Taking advantage of the promiscuity of enzymatic function, many engineered esterases, lipases, epoxide-hydrolases, haloalkane dehalogenases are used for biotechnological applications. Finding means for detoxifying those protein members that are targeted by insecticides, herbicides, antibiotics, or for reactivating human cholinesterases when inhibited by nerve gas, are still active areas of research. Using or improving the capacity of some enzymes to breakdown plastics with the aim to recycle valuable material and reduce waste is an emerging challenge. Most hydrolases in the superfamily are water-soluble and act on or are inhibited by small organic compounds, yet in a few subfamilies some members interact with other, unrelated proteins to modulate activity or trigger functional partnerships. Recent development in 3D structure prediction brought by AI-based programs now permits analysis of enzymatic mechanisms for a variety of hydrolases with no experimental 3D structure available. Finally, mutations in as many as 34 of the 120 human genes compiled in the database are now linked to genetic diseases, a feature fueling research on early detection, metabolic pathways, pharmacological treatment or enzyme replacement therapy. Here we review those developments in the database that took place over the latest decade and discuss potential new applications and recent and future expected research in the field.


Assuntos
Hidrolases , Dobramento de Proteína , Humanos , Hidrolases/metabolismo , Esterases/metabolismo , Proteínas , Colinesterases/metabolismo
6.
Muscle Nerve ; 45(4): 567-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22431091

RESUMO

INTRODUCTION: The effects of locomotor training (LT) on skeletal muscle after peripheral nerve injury and acetylcholinesterase deficiency are not well documented. METHODS: We determined the effects of LT on mouse soleus muscle performance after sciatic nerve transection with excision (full and permanent denervation), nerve transection (partial functional reinnervation), nerve crush (full denervation with full functional reinnervation), and acetylcholinesterase deficiency (alteration in neuromuscular junction functioning). RESULTS: We found no significant effect of LT on the recovery of soleus muscle weight, maximal force in response to muscle stimulation, and fatigue resistance after nerve transection with or without excision. However, LT significantly increased soleus muscle fatigue resistance after nerve crush and acetylcholinesterase deficiency. Moreover, hindlimb immobilization significantly aggravated the deficit in soleus muscle maximal force production and atrophy after nerve crush. CONCLUSIONS: LT is beneficial, and reduced muscle use is detrimental for intrinsic muscle performance in the context of disturbed nerve-muscle communication.


Assuntos
Terapia por Exercício , Locomoção/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Doenças Neuromusculares/fisiopatologia , Acetilcolinesterase/deficiência , Animais , Atrofia , Estimulação Elétrica , Elevação dos Membros Posteriores/fisiologia , Técnicas In Vitro , Contração Isométrica , Masculino , Camundongos , Neurônios Motores/patologia , Contração Muscular/fisiologia , Denervação Muscular , Fadiga Muscular/fisiologia , Músculo Esquelético/patologia , Compressão Nervosa , Doenças Neuromusculares/patologia , Tamanho do Órgão , Resistência Física/fisiologia , Nervo Isquiático/patologia
7.
Neuropharmacology ; 184: 108381, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166544

RESUMO

Cell adhesion generally involves formation of homophilic or heterophilic protein complexes between two cells to form transcellular junctions. Neural cell-adhesion members of the α/ß-hydrolase fold superfamily of proteins use their extracellular or soluble cholinesterase-like domain to bind cognate partners across cell membranes, as illustrated by the neuroligins. These cell-adhesion molecules currently comprise the synaptic organizers neuroligins found in all animal phyla, along with three proteins found only in invertebrates: the guidance molecule neurotactin, the glia-specific gliotactin, and the basement membrane protein glutactin. Although these proteins share a cholinesterase-like fold, they lack one or more residues composing the catalytic triad responsible for the enzymatic activity of the cholinesterases. Conversely, they are found in various subcellular localisations and display specific disulfide bonding and N-glycosylation patterns, along with individual surface determinants possibly associated with recognition and binding of protein partners. Formation of non-covalent dimers typical of the cholinesterases is documented for mammalian neuroligins, yet whether invertebrate neuroligins and their neurotactin, gliotactin and glutactin relatives also form dimers in physiological conditions is unknown. Here we provide a brief overview of the localization, function, evolution, and conserved versus individual structural determinants of these cholinesterase-like cell-adhesion proteins. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Colinesterases/química , Colinesterases/genética , Matriz Extracelular/química , Matriz Extracelular/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Colinesterases/metabolismo , Mapeamento Cromossômico/métodos , Matriz Extracelular/metabolismo , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
J Med Chem ; 64(13): 9302-9320, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152756

RESUMO

A series of multitarget-directed ligands (MTDLs) was designed by functionalizing a pseudo-irreversible butyrylcholinesterase (BChE) inhibitor. The obtained hybrids were investigated in vitro regarding their hBChE and hAChE inhibition, their enzyme kinetics, and their antioxidant physicochemical properties (DPPH, ORAC, metal chelating). In addition, in vitro assays were applied to investigate antioxidant effects using murine hippocampal HT22 cells and immunomodulatory effects on the murine microglial N9 cell line. The MTDLs retained their antioxidative properties compared to the parent antioxidant-moieties in vitro and the inhibition of hBChE was maintained in the submicromolar range. Representative compounds were tested in a pharmacological Alzheimer's disease (AD) mouse model and demonstrated very high efficacy at doses as low as 0.1 mg/kg. The most promising compound was also tested in BChE-/- mice and showed reduced efficacy. In vivo neuroprotection by BChE inhibition can be effectively enhanced by incorporation of structurally diverse antioxidant moieties.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Butirilcolinesterase/deficiência , Butirilcolinesterase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cromanos/síntese química , Cromanos/química , Cromanos/farmacologia , Cinamatos/síntese química , Cinamatos/química , Cinamatos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Melatonina/síntese química , Melatonina/química , Melatonina/farmacologia , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
9.
Chem Biol Interact ; 308: 179-184, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100280

RESUMO

Within the alpha/beta hydrolase fold superfamily of proteins, the COesterase group (carboxylesterase type B, block C, cholinesterases …) diverged from the other groups through simultaneous integration of an N-terminal, first disulfide bond and a significant increase in the protein mean size. This first disulfide bond ties a large Cys loop, which in the cholinesterases is named the omega loop and forms the upper part of the active center gorge, essential for the high catalytic activity of these enzymes. In some non-catalytic members of the family, the loop may be necessary for heterologous partner recognition. Reshuffling of this protein portion occurred at the time of emergence of the fungi/metazoan lineage. Homologous proteins with this first disulfide bond are absent in plants but they are found in a limited number of bacterial genomes. In prokaryotes, the genes coding for such homologous proteins may have been acquired by horizontal transfer. However, the cysteines of the first disulfide bond are often lost in bacteria. Natural expression in bacteria of CO-esterases comprising this disulfide bond may have required compensatory mutations or expression of new chaperones. This disulfide bond may also challenge expression of the eukaryote-specific cholinesterases in prokaryotic cells. Yet recently, catalytically active human cholinesterase variants with enhanced thermostability were successfully expressed in E. coli. The key was the use of a peptidic sequence optimized through the Protein Repair One Stop Shop process, an automated structure- and sequence-based algorithm for expression of properly folded, soluble and stable eukaryotic proteins. Surprisingly however, crystal structures of the optimized cholinesterase variants expressed in bacteria revealed co-existing formed and unformed states of the first disulfide bond. Whether the bond never formed, or whether it properly formed then broke during the production/analysis process, cannot be inferred from the structural data. Yet, these features suggest that the recently acquired first disulfide bond is difficult to maintain in E. coli-expressed cholinesterases. To explore the fate of the first disulfide bond throughout the cholinesterase relatives, we reanalyzed the crystal structures of representative COesterases members from natural prokaryotic or eukaryotic sources or produced as recombinant proteins in E. coli. We found that in most cases this bond is absent.


Assuntos
Proteínas de Bactérias/química , Carboxilesterase/química , Colinesterases/metabolismo , Dissulfetos/química , Proteínas de Bactérias/metabolismo , Carboxilesterase/metabolismo , Colinesterases/química , Colinesterases/genética , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Evolução Molecular , Humanos
10.
FEBS J ; 275(6): 1309-22, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18279391

RESUMO

To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.


Assuntos
Acetilcolinesterase/metabolismo , Ciona intestinalis/enzimologia , Colágeno/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Colágeno/química , Colágeno/genética , Colagenases/química , DNA Complementar/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Conformação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
11.
Chem Biol Interact ; 175(1-3): 125-8, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18448086

RESUMO

Cholinesterase activity is known in representatives of all living organisms phyla but the origin of the cholinergic system as known in bilaterian animals is still undeciphered. In particular the implication of cholinesterases in the nervous system of non-bilaterian Metazoa is not well known. We thus chose to investigate this activity in the Clytia hemisphaerica (Cnidaria) medusa. In toto histochemical staining revealed an acetylcholinesterase activity in the tentacle bulbs but not in the nervous system. Sequences homologous to acetylcholinesterase were searched within Clytia ESTs and compared to other sequences found in public databases.


Assuntos
Acetilcolinesterase/metabolismo , Cnidários/enzimologia , Acetilcolinesterase/química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
12.
Chem Biol Interact ; 175(1-3): 113-4, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550043

RESUMO

Congenital myasthenic syndromes (CMS) are a heterogeneous group of diseases caused by genetic defects affecting neuromuscular transmission. The causal mutations have been described in number of cases. The slow channel myasthenic syndrome (slow-channel-CMS) results in a marked prolongation of channel opening in stimulated receptors (nAChR) and the end plate acetylcholinesterase (AChE) deficiency congenital myasthenic syndrome (ColQ-CMS) results in an increased action of acetylcholine (ACh) at the synapse. Anticholinesterase medication is detrimental in these cases. The successful treatment of slow-channel-CMS patients with the antidepressant serotonin re-uptake inhibitor fluoxetine has been reported. At high concentration it has a non-depolarizing effect on nicotinic receptors. This led us to the idea that fluoxetine could protect AChR from a relative excess of ACh. We investigated the possible use of fluoxetine as treatment in the AChE KO mouse. Treatment at 6 mg/kg from 3 weeks to 2 months increased slightly the daily weight gain but not the final weight at 2 months in AChE-/- mice. Isometric force production of Tibialis anterior in response to electric nerve stimulation was measured in situ in AChE-/- and wild type mice treated or not by fluoxetine. The results show that the maximum twitch force in response to a single nerve stimulation, the maximal tetanic force (P0) in response to repetitive nerve stimulation and the tetanic fade are not changed in AChE-/- mice treated with fluoxetine versus control AChE-/- mice.


Assuntos
Acetilcolinesterase/metabolismo , Fluoxetina/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Acetilcolinesterase/genética , Animais , Camundongos , Camundongos Knockout , Junção Neuromuscular/fisiologia
13.
Chem Biol Interact ; 175(1-3): 131-4, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18533140

RESUMO

We examined the sensitivity of AChE(+/-) mice to the amnesic effects of scopolamine and amyloid beta peptide. AChE(+/-) and AChE(+/+) littermates, tested at 5-9 weeks of age, failed to show any difference in locomotion, exploration and anxiety in the open-field test, or in-place learning in the water-maze. However, when treated with the muscarinic receptor antagonist scopolamine (0.5, 5mg/kg s.c.) 20 min before each water-maze training session, learning impairments were observed at both doses in AChE(+/+) mice, but only at the highest dose in AChE(+/-) mice. The central injection of Abeta(25-35) peptide (9 nmol) induced learning deficits only in AChE(+/+) but not in AChE(+/-) mice. Therefore, the hyper-activity of cholinergic systems in AChE(+/-) mice did not result in increased memory abilities, but prevented the deleterious effects of muscarinic blockade or amyloid toxicity.


Assuntos
Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Peptídeos beta-Amiloides/farmacologia , Heterozigoto , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Escopolamina/farmacologia , Acetilcolinesterase/genética , Peptídeos beta-Amiloides/química , Animais , Relação Dose-Resposta a Droga , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/química
14.
Chem Biol Interact ; 175(1-3): 129-30, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550042

RESUMO

Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.


Assuntos
Acetilcolinesterase/metabolismo , Músculo Esquelético/fisiologia , Acetilcolinesterase/genética , Animais , Estimulação Elétrica , Contração Isométrica , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia
15.
Nat Neurosci ; 5(2): 111-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11753420

RESUMO

The neurotransmitter acetylcholine (ACh) has a crucial role in central and neuromuscular synapses of the cholinergic system. After release into the synaptic cleft, ACh is rapidly degraded by acetylcholinesterase (AChE). We have identified a mutation in the ache gene of the zebrafish, which abolishes ACh hydrolysis in homozygous animals completely. Embryos are initially motile but subsequently develop paralysis. Mutant embryos show defects in muscle fiber formation and innervation, and primary sensory neurons die prematurely. The neuromuscular phenotype in ache mutants is suppressed by a homozygous loss-of-function allele of the alpha-subunit of the nicotinic acetylcholine receptor (nAChR), indicating that the impairment of neuromuscular development is mediated by activation of nAChR in the mutant. Here we provide genetic evidence for non-classical functions of AChE in vertebrate development.


Assuntos
Acetilcolinesterase/fisiologia , Músculo Esquelético/embriologia , Sistema Nervoso/embriologia , Neurônios/fisiologia , Peixe-Zebra/embriologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Morte Celular , Embrião não Mamífero/fisiologia , Dados de Sequência Molecular , Doenças Musculares/genética , Mutação/fisiologia , Junção Neuromuscular/embriologia , Neurônios Aferentes/fisiologia , Fenótipo , Receptores Nicotínicos/fisiologia , Peixe-Zebra/genética
16.
J Med Chem ; 61(4): 1646-1663, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29400965

RESUMO

The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted µ-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/química , Receptor CB2 de Canabinoide/agonistas , Benzimidazóis/agonistas , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Cognição/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G , Relação Estrutura-Atividade
17.
Life Sci ; 80(24-25): 2380-5, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17467011

RESUMO

At the neuromuscular junction (NMJ) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can hydrolyze acetylcholine (ACh). Released ACh quanta are known to diffuse rapidly across the narrow synaptic cleft and pairs of ACh molecules cooperate to open endplate channels. During their diffusion through the cleft, or after being released from muscle nicotinic ACh receptors (nAChRs), most ACh molecules are hydrolyzed by AChE highly concentrated at the NMJ. Advances in mouse genomics offered new approaches to assess the role of specific cholinesterases involved in synaptic transmission. AChE knockout mice (AChE-KO) provide a valuable tool for examining the complete abolition of AChE activity and the role of BChE. AChE-KO mice live to adulthood, and exhibit an increased sensitivity to BChE inhibitors, suggesting that BChE activity facilitated their survival and compensated for AChE function. Our results show that BChE is present at the endplate region of wild-type and AChE-KO mature muscles. The decay time constant of focally recorded miniature endplate currents was 1.04 +/- 0.06 ms in wild-type junctions and 5.4 ms +/- 0.3 ms in AChE-KO junctions, and remained unaffected by BChE-specific inhibitors, indicating that BChE is not limiting ACh duration on endplate nAChRs. Inhibition of BChE decreased evoked quantal ACh release in AChE-KO NMJs. This reduction in ACh release can explain the greatest sensitivity of AChE-KO mice to BChE inhibitors. BChE is known to be localized in perisynaptic Schwann cells, and our results strongly suggest that BChE's role at the NMJ is to protect nerve terminals from an excess of ACh.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Transmissão Sináptica/fisiologia , Acetilcolinesterase/genética , Animais , Benzenamina, 4,4'-(3-oxo-1,5-pentanodi-il)bis(N,N-dimetil-N-2-propenil-), Dibrometo/farmacologia , Inibidores da Colinesterase/farmacologia , Eletrofisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Eletrônica , Placa Motora/efeitos dos fármacos , Placa Motora/metabolismo , Placa Motora/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Tetraisopropilpirofosfamida/farmacologia , Fatores de Tempo
18.
Nucleic Acids Res ; 32(Database issue): D145-7, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681380

RESUMO

The alpha/beta-hydrolase fold is characterized by a beta-sheet core of five to eight strands connected by alpha-helices to form a alpha/beta/alpha sandwich. In most of the family members the beta-strands are parallels, but some show an inversion in the order of the first strands, resulting in antiparallel orientation. The members of the superfamily diverged from a common ancestor into a number of hydrolytic enzymes with a wide range of substrate specificities, together with other proteins with no recognized catalytic activity. In the enzymes the catalytic triad residues are presented on loops, of which one, the nucleophile elbow, is the most conserved feature of the fold. Of the other proteins, which all lack from one to all of the catalytic residues, some may simply be 'inactive' enzymes while others are known to be involved in surface recognition functions. The ESTHER database (http://bioweb.ensam.inra.fr/esther) gathers and annotates all the published information related to gene and protein sequences of this superfamily, as well as biochemical, pharmacological and structural data, and connects them so as to provide the bases for studying structure-function relationships within the family. The most recent developments of the database, which include a section on human diseases related to members of the family, are described.


Assuntos
Bases de Dados de Proteínas , Hidrolases/química , Proteínas/química , Proteínas/classificação , Animais , Biologia Computacional , Humanos , Internet , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
19.
Chem Biol Interact ; 259(Pt B): 343-351, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109753

RESUMO

Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/ß hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/ß hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/ß hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Organofosfatos/química , Organofosfatos/metabolismo , Biocatálise/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
20.
Behav Brain Res ; 296: 351-360, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306824

RESUMO

Butyrylcholinesterase (BChE) is an important enzyme for detoxication and metabolism of ester compounds. It also hydrolyzes the neurotransmitter acetylcholine (ACh) in pathological conditions and may play a role in Alzheimer's disease (AD). We here compared the learning ability and vulnerability to Aß toxicity in male and female BChE knockout (KO) mice and their 129Sv wild-type (Wt) controls. Animals tested for place learning in the water-maze showed increased acquisition slopes and presence in the training quadrant during the probe test. An increased passive avoidance response was also observed for males. BChE KO mice therefore showed enhanced learning ability in spatial and non-spatial memory tests. Intracerebroventricular (ICV) injection of increasing doses of amyloid-ß[25-35] (Aß25-35) peptide oligomers resulted, in Wt mice, in learning and memory deficits, oxidative stress and decrease in ACh hippocampal content. In BChE KO mice, the Aß25-35-induced deficit in place learning was attenuated in males and blocked in females. No change in lipid peroxidation or ACh levels was observed after Aß25-35 treatment in male or female BChE KO mice. These data showed that the genetic invalidation of BChE in mice augmented learning capacities and lowered the vulnerability to Aß toxicity.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Comportamento Animal/fisiologia , Butirilcolinesterase/fisiologia , Transtornos Cognitivos/induzido quimicamente , Fragmentos de Peptídeos/toxicidade , Aprendizagem Espacial/fisiologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Butirilcolinesterase/genética , Transtornos Cognitivos/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Fragmentos de Peptídeos/administração & dosagem , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA