RESUMO
Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.
Assuntos
Células Epiteliais Alveolares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Dipeptidil Peptidase 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmão/metabolismo , Modelos Animais de DoençasRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
Assuntos
Antivirais/análise , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Linhagem Celular , Inibidores de Cisteína Proteinase/análise , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazonas , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Morfolinas/análise , Morfolinas/farmacologia , Pandemias , Pirimidinas , Reprodutibilidade dos Testes , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Triazinas/análise , Triazinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19RESUMO
Chronic cutaneous wounds remain a persistent unmet medical need that decreases life expectancy and quality of life. Here, we report that topical application of PY-60, a small-molecule activator of the transcriptional coactivator Yes-associated protein (YAP), promotes regenerative repair of cutaneous wounds in pig and human models. Pharmacological YAP activation enacts a reversible pro-proliferative transcriptional program in keratinocytes and dermal cells that results in accelerated re-epithelization and regranulation of the wound bed. These results demonstrate that transient topical administration of a YAP activating agent may represent a generalizable therapeutic approach to treating cutaneous wounds.
Assuntos
Qualidade de Vida , Cicatrização , Humanos , Animais , Suínos , Cicatrização/fisiologia , Pele/lesões , Queratinócitos/metabolismo , Administração CutâneaRESUMO
KEAP1 (Kelch-like ECH-associated protein), a cytoplasmic repressor of the oxidative stress responsive transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), senses the presence of electrophilic agents by modification of its sensor cysteine residues. In addition to xenobiotics, several reactive metabolites have been shown to covalently modify key cysteines on KEAP1, although the full repertoire of these molecules and their respective modifications remain undefined. Here, we report the discovery of sAKZ692, a small molecule identified by high-throughput screening that stimulates NRF2 transcriptional activity in cells by inhibiting the glycolytic enzyme pyruvate kinase. sAKZ692 treatment promotes the buildup of glyceraldehyde 3-phosphate, a metabolite which leads to S-lactate modification of cysteine sensor residues of KEAP1, resulting in NRF2-dependent transcription. This work identifies a posttranslational modification of cysteine derived from a reactive central carbon metabolite and helps further define the complex relationship between metabolism and the oxidative stress-sensing machinery of the cell.
Assuntos
Cisteína , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2/metabolismo , Cisteína/metabolismo , Transdução de Sinais , Estresse OxidativoRESUMO
Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.
Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptidil Dipeptidase A/metabolismoRESUMO
Stem cell transplantation and genetic therapies offer potential cures for patients with sickle cell disease (SCD), but these options require advanced medical facilities and are expensive. Consequently, these treatments will not be available for many years to the majority of patients suffering from this disease. What is urgently needed now is an inexpensive oral drug in addition to hydroxyurea, the only drug approved by the FDA that inhibits sickle-hemoglobin polymerization. Here, we report the results of the first phase of our phenotypic screen of the 12,657 compounds of the Scripps ReFRAME drug repurposing library using a recently developed high-throughput assay to measure sickling times following deoxygenation to 0% oxygen of red cells from sickle trait individuals. The ReFRAME library is a very important collection because the compounds are either FDA-approved drugs or have been tested in clinical trials. From dose-response measurements, 106 of the 12,657 compounds exhibit statistically significant antisickling at concentrations ranging from 31 nM to 10 µM. Compounds that inhibit sickling of trait cells are also effective with SCD cells. As many as 21 of the 106 antisickling compounds emerge as potential drugs. This estimate is based on a comparison of inhibitory concentrations with free concentrations of oral drugs in human serum. Moreover, the expected therapeutic potential for each level of inhibition can be predicted from measurements of sickling times for cells from individuals with sickle syndromes of varying severity. Our results should motivate others to develop one or more of these 106 compounds into drugs for treating SCD.
Assuntos
Anemia Falciforme , Antidrepanocíticos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Reposicionamento de Medicamentos , Hemoglobina Falciforme , Humanos , Hidroxiureia/farmacologia , Oxigênio/uso terapêuticoRESUMO
Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.
RESUMO
To identify new compounds that can effectively inhibit Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), we screened, synthesized, and evaluated a series of novel aryl fluorosulfate derivatives for their in vitro inhibitory activity against Mtb. Compound 21b exhibited an in vitro minimum inhibitory concentration (MIC) of 0.06 µM against Mtb, no cytotoxicity against both HEK293T and HepG2 mammalian cell lines, and had good in vivo mouse plasma exposure and lung concentration with a 20 mg/kg oral dose, which supports advanced development as a new chemical entity for TB treatment.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Antituberculosos , Células HEK293 , Mamíferos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/farmacologiaRESUMO
Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases.
Assuntos
Glicólise , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Elementos de Resposta Antioxidante/genética , Arginina/química , Arginina/metabolismo , Linhagem Celular , Cisteína/química , Cisteína/metabolismo , Citoproteção , Glicólise/efeitos dos fármacos , Humanos , Imidazóis/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/agonistas , Fosfoglicerato Quinase/antagonistas & inibidores , Multimerização Proteica , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica , UbiquitinaçãoRESUMO
Quantitative phase imaging (QPI) is a powerful optical imaging modality for label-free, rapid, and three-dimensional (3D) monitoring of cells and tissues. However, molecular imaging of important intracellular biomolecules such as enzymes remains a largely unexplored area for QPI. Herein, we introduce a fundamentally new approach by designing QPI contrast agents that allow sensitive detection of intracellular biomolecules. We report a new class of bio-orthogonal QPI-nanoprobes for in situ high-contrast refractive index (RI) imaging of enzyme activity. The nanoprobes feature silica nanoparticles (SiO2 NPs) having higher RI than endogenous cellular components and surface-anchored cyanobenzothiazole-cysteine (CBT-Cys) conjugated enzyme-responsive peptide sequences. The nanoprobes specifically aggregated in cells with target enzyme activity, increasing intracellular RI and enabling precise visualization of intracellular enzyme activity. We envision that this general design of QPI-nanoprobes could open doors for spatial-temporal mapping of enzyme activity with direct implications for disease diagnosis and evaluating the therapeutic efficacy.
Assuntos
Microscopia , Nanopartículas , Microscopia/métodos , Dióxido de Silício/química , Nanopartículas/química , Imagem Óptica/métodosRESUMO
The transcriptional coactivator Yes-associated protein 1 (YAP) orchestrates a proproliferative transcriptional program that controls the fate of somatic stem cells and the regenerative responses of certain tissues. As such, agents that activate YAP may hold therapeutic potential in disease states exacerbated by insufficient proliferative repair. Here we report the discovery of a small molecule, termed PY-60, which robustly activates YAP transcriptional activity in vitro and promotes YAP-dependent expansion of epidermal keratinocytes in mouse following topical drug administration. Chemical proteomics revealed the relevant target of PY-60 to be annexin A2 (ANXA2), a protein that directly associates with YAP at the cell membrane in response to increased cell density. PY-60 treatment liberates ANXA2 from the membrane, ultimately promoting a phosphatase-bound, nonphosphorylated and transcriptionally active form of YAP. This work reveals ANXA2 as a previously undescribed, druggable component of the Hippo pathway and suggests a mechanistic rationale to promote regenerative repair in disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anexina A2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo , Administração Tópica , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Anexina A2/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Proteínas de Sinalização YAPRESUMO
Studies suggest that the 1'ß-CN moiety in remdesivir sterically clashes with the Ser861 residue of the RNA-dependent-RNA polymerase (RdRp), causing a delayed chain termination in the RNA replication process. Replacing C1'ß-CN with 5-membered heterocycles such as tetrazoles, oxadiazoles, and triazoles can augment the inhibitory activity and pharmacokinetic profile of C-nucleotides. Synthesis of tetrazole-, triazole-, and oxadiazole-integrated C1' analogues of remdesivir was attempted using general synthetic routes. The final compounds 26, 28, and 29 did not inhibit viral replication; however, the synthetic intermediates, i.e., 27 and 50, exhibited an IC90 = 14.1 µM each. The trifluoromethyl-substituted 1,2,4-oxadiazole 59 showed an IC90 of 33.5 µM. This work adds to the growing evidence of the beneficial medicinal impact of C1,1'-disubstituted C-nucleotides.
Assuntos
Alanina , Nucleotídeos , Monofosfato de Adenosina , Oxidiazóis/farmacologia , Oxidiazóis/químicaRESUMO
Activating NRF2-driven transcription with non-electrophilic small molecules represents an attractive strategy to therapeutically target disease states associated with oxidative stress and inflammation. In this study, we describe a campaign to optimize the potency and efficacy of a previously identified bis-sulfone based non-electrophilic ARE activator 2. This work identifies the efficacious analog 17, a compound with a non-cytotoxic profile in IMR32 cells, as well as ARE activators 18 and 22, analogs with improved cellular potency. In silico drug-likeness prediction suggested the optimized bis-sulfones 17, 18, and 22 will likely be of pharmacological utility.
Assuntos
Elementos de Resposta Antioxidante , Antioxidantes , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse OxidativoRESUMO
BMS906024, a γ-secretase inhibitor that blocks Notch signaling, was previously shown to inhibit Cryptosporidium parvum growth in vitro. A structure-activity relationship (SAR) analysis of BMS906024 reported herein demonstrates the importance of the stereochemistry of the C-3 benzodiazepine and the succinyl ß-substituent. However, concomitant removal of the succinyl α-substituent and switching the primary amide with secondary amides was tolerated. For example, 32 (SH287) inhibited C. parvum growth in HCT-8 host cells with an EC50 = 6.4 nM and an EC90 = 16 nM; however, blocking C. parvum growth with BMS906024 derivatives was correlative with inhibition of Notch signaling, highlighting that additional SAR analysis will be needed to separate these two activities.
Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Relação Estrutura-AtividadeRESUMO
G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and ß-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses ('efficacy'). Furthermore, increasing biophysical evidence, primarily using the ß2-adrenergic receptor (ß2AR) as a model system, supports the existence of multiple active and inactive conformational states. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct ß2AR conformations using single domain camelid antibodies (nanobodies)a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for ß2AR in the presence of Nb80 compared to the affinity of isoprenaline for ß2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the ß2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the inactive, Nb60-bound state (R60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states.
Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Cristalografia por Raios X , Agonismo Parcial de Drogas , Humanos , Isoproterenol/farmacologia , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacosRESUMO
The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.
Assuntos
Carpas , Hematologia , Animais , Cetilpiridínio , Simulação de Acoplamento Molecular , Dodecilsulfato de Sódio/análogos & derivados , Dodecilsulfato de Sódio/toxicidade , Tensoativos/toxicidadeRESUMO
Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.
Assuntos
Benzimidazóis/farmacologia , MicroRNAs/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Ribonucleases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Benzimidazóis/química , Humanos , MicroRNAs/metabolismo , Estrutura Molecular , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Inibidores de Proteínas Quinases/química , Quinolonas/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
The transcription factor NRF2 controls resistance to oxidative insult and is thus a key therapeutic target for treating a number of disease states associated with oxidative stress and aging. We previously reported CBR-470-1, a bis-sulfone which activates NRF2 by increasing the levels of methylglyoxal, a metabolite that covalently modifies NRF2 repressor KEAP1. Here, we report the design, synthesis, and structure activity relationship of a series of bis-sulfones derived from this unexplored chemical template. We identify analogs with sub-micromolar potencies, 7f and 7g, as well as establish that efficacious NRF2 activation can be achieved by non-toxic analogs 7c, 7e, and 9, a key limitation with CBR-470-1. Further efforts to identify non-covalent NRF2 activators of this kind will likely provide new insight into revealing the role of central metabolism in cellular signaling.
Assuntos
Antioxidantes/farmacologia , Descoberta de Drogas , Tiofenos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/químicaRESUMO
New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.