Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(12): 3045-3058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546794

RESUMO

Increasing demand for size-resolved identification and quantification of microplastic particles in drinking water and environmental samples requires the adequate validation of methods and techniques that can be used for this purpose. In turn, the feasibility of such validation depends on the existence of suitable certified reference materials (CRM). A new candidate reference material (RM), consisting of polyethylene terephthalate (PET) particles and a water matrix, has been developed. Here, we examine its suitability with respect to a homogeneous and stable microplastic particle number concentration across its individual units. A measurement series employing tailor-made software for automated counting and analysis of particles (TUM-ParticleTyper 2) coupled with Raman microspectroscopy showed evidence of the candidate RM homogeneity with a relative standard deviation of 12% of PET particle counts involving particle sizes >30 µm. Both the total particle count and the respective sums within distinct size classes were comparable in all selected candidate RM units. We demonstrate the feasibility of production of a reference material that is sufficiently homogeneous and stable with respect to the particle number concentration.

2.
Foods ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254546

RESUMO

A spectroscopic investigation of beeswax adulteration by paraffin and/or stearic acid was undertaken via Attenuated Total Reflectance Infra-Red spectroscopy (ATR-IR) combined with multivariate statistical analyses. Principal Component Analysis (PCA) was successfully applied for the first time as an exploratory tool for the differentiation among pure beeswax and adulterated beeswax by paraffin and stearic acid with detection limits (LOD) of ~5% and 1%, respectively. Partial Least Square (PLS) modelling was used to build chemometric models based on beeswax/paraffin and beeswax/stearic acid calibration mixtures and subsequently used to predict concentrations of paraffin and stearic acid on a set of unknown test samples. PLS predictions demonstrated that beeswax adulteration by paraffin is much more prominent (74%) than the one by stearic acid (26%) and that commercial beeswax products (candles, pearls, blocks, etc.) are more prone to adulteration (27%) than honeycomb-type samples (12.5%).

3.
ChemSusChem ; 11(1): 137-148, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29171724

RESUMO

An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source.


Assuntos
Dióxido de Carbono/química , Técnicas Eletroquímicas/métodos , Alumínio/química , Eletrodos , Grafite/química , Concentração de Íons de Hidrogênio , Oxirredução , Porosidade
4.
J Mater Chem B ; 5(36): 7608-7621, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264236

RESUMO

Metal ions are frequently incorporated into crystalline materials to improve their electrochemical properties and to confer new physicochemical properties. Naturally-occurring phosphate apatite, which is formed geologically and in biomineralization processes, has extensive potential applications and is therefore an attractive functional material. In this study, we generate a novel building block for flexible optoelectronics using bio-inspired methods to deposit a layer of photoactive titanium-modified hydroxyapatite (TiHA) nanoparticles (NPs) on conductive polypyrrole(PPy)-coated wool yarns. The titanium concentration in the reaction solution was varied between 8-50 mol% with respect to the phosphorous, which led to titanate ions replacing phosphate in the hydroxyapatite lattice at levels up to 17 mol%. PPy was separately deposited on wool yarns by oxidative polymerization, using two dopants: (i) anthraquinone-2,6-disulfonic acid to increase the conductivity of the PPy layer and (ii) pyroglutamic acid, to reduce the resistivity of the wool yarns and to promote the heterogeneous nucleation of the TiHA NPs. A specific titanium concentration (25 mol% wrt P) was used to endow the TiHA NPs on the PPy-coated fibers with a desirable band gap value of 3.68 eV, and a specific surface area of 146 m2 g-1. This is the first time that a thin film of a wide-band gap semiconductor has been deposited on natural fibers to create a fiber-based building block that can be used to manufacture flexible electronic devices.

5.
Acta Biomater ; 46: 278-285, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27667019

RESUMO

We report the design, fabrication and application of a novel micro-electromechanical device coupled to a confocal Raman microscope that enables in situ molecular investigations of micro-fibers under uniaxial tensile load. This device allows for the mechanical study of micro-fibers with diameters in the range between 10 and 100µm and lengths of several hundred micrometers. By exerting forces in the mN range, the device enables an important force range to be accessed between that of atomic force microscopy and macroscopic stress-strain measurement devices. The load is varied using a stiffness-calibrated glass micro-needle driven by a piezo-translator during simultaneous Raman microscopy imaging. The method enables experiments probing the molecular response of micro-fibers to external stress. This set-up was applied to biomimetic non-mineralized and mineralized collagen micro-fibers revealing that above 30% mineralization the proline-related Raman band shows a pronounced response to stress, which is not observed in non-mineralized collagen. This molecular response coincides with a strong increase in the Young's modulus from 0.5 to 6GPa for 0% and 70% mineralized collagen, respectively. Our results are consistent with a progressive interlocking of the collagen triple-helices by apatite nanocrystals as the degree of mineralization increases. STATEMENT OF SIGNIFICANCE: Collagen and apatite are the main constituents regulating the mechanical properties of bone. Hence, an improved understanding of the impact of mineralization on these properties is of large interest for the scientific community. This paper presents systematic studies of synthetic collagen microfibers with increasing apatite content and their response to tensile stress by using a novel self-made electromechanical device combined with a Raman spectrometer for molecular level studies. The impact of apatite on the mechanical and molecular response of collagen is evaluated giving important insights into the interaction between the mineral and organic phases. Therefore our findings expand the fundamental understanding of the mechanics of the apatite/collagen system relevant for the design of bio-composites with similar bio-mimicking properties for e.g. bone regrowth in medical applications.


Assuntos
Apatitas/química , Materiais Biomiméticos/química , Colágeno/química , Fenômenos Mecânicos , Análise Espectral Raman/métodos , Estresse Mecânico , Animais , Calibragem , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA