Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(4): 221, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146574

RESUMO

The deterioration of water quality of river Ganga is a huge concern for Govt. of India. Apart from various pollution sources, the religious and ritualistic activities also have a good share in deteriorating Ganga water quality. Thus, the aim of the present study was to evaluate the changes in physico-chemical properties, microbial diversity and role of bacteriophages in controlling bacterial population of Ganga water during mass ritualistic bathing on the occasion of Maha-Kumbh in 2013. The BOD, COD, hardness, TDS and level of various ions significantly increased, while DO decreased in Ganga water during Maha-Kumbh. Ganga water was more affluent in trace elements than Yamuna and their levels further increased during Maha-Kumbh, which was correlated with decreased level of trace elements in the sediment. The bacterial diversity and evenness were increased and correlated with the number of devotees taking a dip at various events. Despite enormous increase in bacterial diversity during mass ritualistic bathing, the core bacterial species found in pre-Kumbh Ganga water were present in all the samples taken during Kumbh and post-Kumbh. In addition, the alteration in bacterial population during mass bathing was well under 2 log units which can be considered negligible. The study of bacteriophages at different bathing events revealed that Ganga was richer with the presence of bacteriophages in comparison with Yamuna against seven common bacteria found during the Maha-Kumbh. These bacteriophages have played a role in controlling bacterial growth and thus preventing putrefaction of Ganga water. Further, the abundance of trace elements in Ganga water might also be a reason for suppression of bacterial growth. Thus, the current study showed that Ganga has characteristic water quality in terms of physico-chemical property and microbial diversity that might have a role in the reported self-cleansing property of Ganga; however, the increased pollution load has surpassed its self-cleansing properties. Since water has been celebrated in all cultures, the outcome of the current study will not only be useful for the policy maker of cleaning and conservation of Ganga but also for restoration of other polluted rivers all over the world.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Qualidade da Água , Índia , Rios
2.
Ecotoxicol Environ Saf ; 138: 47-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28006731

RESUMO

Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selenito de Sódio/farmacologia , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Arsênio/metabolismo , Arsenitos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Metais Pesados/metabolismo , NADPH Oxidases/metabolismo , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Compostos de Sulfidrila/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Data Brief ; 43: 108377, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761993

RESUMO

The present article represents the data for analysis of microbial consortium (P.putida+C.vulgaris) mediated amelioration of arsenic toxicity in rice plant. In the current study the transcriptome profiling of treated rice root and shoot was performed by illumina sequencing (Platform 2000). To process the reads and to analyse differential gene expression, Fastxtoolkit, NGSQCtoolkit, Bowtie 2 (version 2.1.0), Tophat program (version 2.0.8), Cufflinks and Cuffdiff programs were used. For Proteome profiling, total soluble proteins in shoot of rice plant among different treatments were extracted and separated by 2D poly acrylamide gel electrophoresis (PAGE) and then proteins were identified with the help of MALDI-TOF/TOF. In gel based method of protein identification, the isoelectric focusing machine (IPGphor system,Bio-Rad USA), gel unit (SDS-PAGE) and MALDI-TOF/TOF (4800 proteomic analyzer Applied Biosystem, USA) were used for successful separation and positive identification of proteins. To check the differential abundance of proteins among different treatments, PDQuest software was used for data analysis. For protein identification, Mascot search engine (http://www.matrixscience.com) using NCBIprot/SwissProt databases of rice was used. The analyzed data inferred comprehensive picture of key genes and their respective proteins involved in microbial consortium mediated improved plant growth and amelioration of As induced phyto-toxicity in rice. For the more comprehensive information of data, the related full-length article entitled "Microbial consortium mediated growth promotion and Arsenic reduction in Rice: An integrated transcriptome and proteome profiling" may be accessed.

4.
J Hazard Mater ; 390: 122122, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006842

RESUMO

Arsenic (As), a chronic poison and non-threshold carcinogen, is a food chain contaminant in rice, posing yield losses as well as serious health risks. Selenium (Se), a trace element, is a known antagonist of As toxicity. In present study, RNA seq. and proteome profiling, along with morphological analyses were performed to explore molecular cross-talk involved in Se mediated As stress amelioration. The repair of As induced structural deformities involving disintegration of cell wall and membranes were observed upon Se supplementation. The expression of As transporter genes viz., NIP1;1, NIP2;1, ABCG5, NRAMP1, NRAMP5, TIP2;2 as well as sulfate transporters, SULTR3;1 and SULTR3;6, were higher in As + Se compared to As alone exposure, which resulted in reduced As accumulation and toxicity. The higher expression of regulatory elements like AUX/IAA, WRKY and MYB TFs during As + Se exposure was also observed. The up-regulation of GST, PRX and GRX during As + Se exposure confirmed the amelioration of As induced oxidative stress. The abundance of proteins involved in photosynthesis, energy metabolism, transport, signaling and ROS homeostasis were found higher in As + Se than in As alone exposure. Overall, present study identified Se responsive pathways, genes and proteins involved to cope-up with As toxicity in rice.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selênio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , RNA-Seq , Transcriptoma/efeitos dos fármacos
5.
J Hazard Mater ; 351: 177-187, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29533890

RESUMO

Rice grown in arsenic (As) contaminated areas contributes to high dietary exposure of As inducing multiple adverse effects on human health. The As contamination and application of phosphate fertilizers during seedling stage creates a high P and As stress condition. The flooded paddy fields are also conducive for algal growth and microbial activity. The present study proposes potential role of microalgae, Chlorella vulgaris (CHL) and bacteria, Pseudomonas putida (RAR) on rice plant grown under excess As and phosphate (P) conditions. The results show synchronized interaction of CHL + RAR which, reduces As uptake through enhanced P:As and reduced As:biomass ratio by modulating P trafficking. Gene expression analysis of different phosphate transporters exhibited correlation with reduced As uptake and other essential metals. The balancing of reactive oxygen species (ROS), proline accumulation, hormone modulation, and As sequestration in microbial biomass were elucidated as possible mechanisms of As detoxification. The study concludes that RAR and CHL combination mitigates the As stress during P-enriched conditions in rice by: (i) reducing As availability, (ii) modulating the As uptake, and (iii) improving detoxification mechanism of the plant. The study will be important in assessing the role and applicability of P solubilizing biofertilizers in these conditions.


Assuntos
Arsênio/metabolismo , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Pseudomonas putida/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Consórcios Microbianos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética
6.
Front Plant Sci ; 8: 1007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676805

RESUMO

Arsenic (As) is a non-essential toxic metalloid whose elevated concentration in rice grains is a serious issue both for rice yield and quality, and for human health. The rice-As interactions, hence, have been studied extensively in past few decades. A deep understanding of factors influencing As uptake and transport from soil to grains can be helpful to tackle this issue so as to minimize grain As levels. As uptake at the root surface by rice plants depends on factors like iron plaque and radial oxygen loss. There is involvement of a number of transporters viz., phosphate transporters and aquaglyceroporins in the uptake and transport of different As species and in the movement to subcellular compartments. These processes are also affected by sulfur availability and consequently on the level of thiol (-SH)-containing As binding peptides viz., glutathione (GSH) and phytochelatins (PCs). Further, the role of phloem in As movement to the grains is also suggested. This review presents a detailed map of journey of As from soil to the grains. The implications for the utilization of available knowledge in minimizing As in rice grains are presented.

7.
Environ Pollut ; 223: 137-145, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28153415

RESUMO

Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.


Assuntos
Arsênio/metabolismo , Biotransformação , Cicer/efeitos dos fármacos , Poluentes do Solo/metabolismo , Trichoderma/metabolismo , Agricultura , Arsênio/toxicidade , Biodegradação Ambiental , Desenvolvimento Vegetal/efeitos dos fármacos , Caules de Planta/química , Microbiologia do Solo , Poluentes do Solo/farmacologia , Poluentes do Solo/toxicidade , Trichoderma/efeitos dos fármacos
9.
Aquat Toxicol ; 157: 70-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456221

RESUMO

Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 µM) and arsenite (As(III); 1-50 µM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential.


Assuntos
Alismatales/efeitos dos fármacos , Alismatales/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Fitoquelatinas/metabolismo , Aminoaciltransferases/metabolismo , Arsênio/química , Arsenitos/metabolismo , Arsenitos/toxicidade , Biodegradação Ambiental , Estresse Oxidativo/efeitos dos fármacos , Fitoquelatinas/biossíntese , Compostos de Sulfidrila/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA