Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2306479120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607233

RESUMO

Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) in brain capillary endothelial cells, leading to the loss of inwardly rectifying K+ (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP2 by converting it to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hiperemia , Acoplamento Neurovascular , Animais , Camundongos , Células Endoteliais , Fosfatidilinositol 3-Quinases/genética , Doenças de Pequenos Vasos Cerebrais/genética , Fosfatidilinositol 3-Quinase
2.
Glia ; 69(12): 2812-2827, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34396578

RESUMO

Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord. To investigate the role of GS in mature OL, we used a conditional knockout (cKO) approach to selectively delete GS-encoding gene (Glul) in OL, which caused a significant decrease in glutamine levels on mouse spinal cord extracts. GS cKO mice (CNP-cre+ :Glulfl/fl ) showed no differences in motor neuron numbers, size or axon density; OL differentiation and myelination in the ventral spinal cord was normal up to 6 months of age. Interestingly, GS cKO mice showed a transient and specific decrease in peak force while locomotion and motor coordination remained unaffected. Last, GS expression in OL was increased in chronic pathological conditions in both mouse and humans. We found a disease-stage dependent increase of OL expressing GS in the ventral spinal cord of SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Moreover, we showed that GLUL transcripts levels were increased in OL in leukocortical tissue from multiple sclerosis but not control patients. These findings provide evidence towards OL-encoded GS function in spinal cord sensorimotor axis, which is dysregulated in chronic neurological diseases.


Assuntos
Esclerose Lateral Amiotrófica , Glutamato-Amônia Ligase , Oligodendroglia , Medula Espinal , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
3.
Neuroimage ; 208: 116415, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811900

RESUMO

Alterations in myelin integrity are involved in many neurological disorders and demyelinating diseases, such as multiple sclerosis (MS). Although magnetic resonance imaging (MRI) is the gold standard method to diagnose and monitor MS patients, clinically available MRI protocols show limited specificity for myelin detection, notably in cerebral grey matter areas. Ultrashort echo time (UTE) MRI has shown great promise for direct imaging of lipids and myelin sheaths, and thus holds potential to improve lesion detection. In this study, we used a sequence combining magnetization transfer (MT) with UTE ("UTE-MT", TE â€‹= â€‹76 â€‹µs) and with short TE ("STE-MT", TE â€‹= â€‹3000 â€‹µs) to evaluate spatial and temporal changes in brain myelin content in the cuprizone mouse model for MS on a clinical 7 â€‹T scanner. During demyelination, UTE-MT ratio (UTE-MTR) and STE-MT ratio (STE-MTR) values were significantly decreased in most white matter and grey matter regions. However, only UTE-MTR detected cortical changes. After remyelination in subcortical and cortical areas, UTE-MTR values remained lower than baseline values, indicating that UTE-MT, but not STE-MT, imaging detected long-lasting changes following a demyelinating event. Next, we evaluated the potential correlations between imaging values and underlying histopathological markers. The strongest correlation was observed between UTE-MTR and percent coverage of myelin basic protein (MBP) immunostaining (r2 â€‹= â€‹0.71). A significant, although lower, correlation was observed between STE-MTR and MBP (r2 â€‹= â€‹0.48), and no correlation was found between UTE-MTR or STE-MTR and gliosis immunostaining. Interestingly, correlations varied across brain substructures. Altogether, our results demonstrate that UTE-MTR values significantly correlate with myelin content as measured by histopathology, not only in white matter, but also in subcortical and cortical grey matter regions in the cuprizone mouse model for MS. Readily implemented on a clinical 7 â€‹T system, this approach thus holds great potential for detecting demyelinating/remyelinating events in both white and grey matter areas in humans. When applied to patients with neurological disorders, including MS patient populations, UTE-MT methods may improve the non-invasive longitudinal monitoring of brain lesions, not only during disease progression but also in response to next generation remyelinating therapies.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Neuroimagem/métodos , Remielinização , Substância Branca/diagnóstico por imagem , Animais , Cuprizona/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Esclerose Múltipla/induzido quimicamente
4.
Proc Natl Acad Sci U S A ; 114(33): E6982-E6991, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760957

RESUMO

Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate. Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is a clinically translatable imaging method that allows noninvasive monitoring of metabolic pathways in real time. This method has proven highly useful to monitor the Warburg effect in cancer, through MR detection of increased HP [1-13C]pyruvate-to-lactate conversion. However, to date, this method has never been applied to the study of neuroinflammation. Here, we questioned the potential of 13C MRSI of HP [1-13C]pyruvate to monitor the presence of neuroinflammatory lesions in vivo in the cuprizone mouse model of MS. First, we demonstrated that 13C MRSI could detect a significant increase in HP [1-13C]pyruvate-to-lactate conversion, which was associated with a high density of proinflammatory MPs. We further demonstrated that the increase in HP [1-13C]lactate was likely mediated by pyruvate dehydrogenase kinase 1 up-regulation in activated MPs, resulting in regional pyruvate dehydrogenase inhibition. Altogether, our results demonstrate a potential for 13C MRSI of HP [1-13C]pyruvate as a neuroimaging method for assessment of inflammatory lesions. This approach could prove useful not only in MS but also in other neurological diseases presenting inflammatory components.


Assuntos
Isótopos de Carbono , Ácido Láctico , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Animais , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Cuprizona/efeitos adversos , Cuprizona/farmacologia , Modelos Animais de Doenças , Feminino , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/genética
5.
NMR Biomed ; 32(11): e4164, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437326

RESUMO

Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inflamação/diagnóstico por imagem , Inflamação/diagnóstico , Neurotoxinas/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inflamação/patologia , Ácido Láctico/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Ácido Pirúvico/metabolismo
6.
NMR Biomed ; 32(2): e4044, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561869

RESUMO

Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13 C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells. We found a significant 40% decrease in the 13 C MRS-detectable ratio of hyperpolarized [1-13 C]lactate to hyperpolarized [1-13 C]pyruvate, [1-13 C]Lac/Pyr, and a 37% decrease in the pseudo-rate constant, kPL , for hyperpolarized [1-13 C]lactate production, in vorinostat-treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat-treated cells. In vivo 13 C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1-13 C]Lac/Pyr when comparing vorinostat-treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC-inhibited tumors. Thus, the 13 C MRSI-detectable decrease in hyperpolarized [1-13 C]lactate production could serve as a biomarker of response to HDAC inhibitors.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glioblastoma/diagnóstico por imagem , Glioblastoma/enzimologia , Inibidores de Histona Desacetilases/farmacologia , Imageamento por Ressonância Magnética , Acetilação , Animais , Reatores Biológicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Histonas/metabolismo , Ácido Láctico/biossíntese , Metaboloma/efeitos dos fármacos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Ácido Pirúvico/metabolismo , Análise de Sobrevida , Simportadores/metabolismo , Vorinostat/farmacologia
7.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486287

RESUMO

Traumatic brain injury (TBI) is of particular concern for the aging community since there is both increased incidence of TBI and decreased functional recovery in this population. In addition, TBI is the strongest environmental risk factor for development of Alzheimer's disease and other dementia-related neurodegenerative disorders. Critical changes that affect cognition take place over time following the initial insult. Our previous work identified immune system activation as a key contributor to cognitive deficits observed in aged animals. Using a focal contusion model in the current study, we demonstrate a brain lesion and cavitation formation, as well as prolonged blood⁻brain barrier breakdown. These changes were associated with a prolonged inflammatory response, characterized by increased microglial cell number and phagocytic activity 30 days post injury, corresponding to significant memory deficits. We next aimed to identify the injury-induced cellular and molecular changes that lead to chronic cognitive deficits in aged animals, and measured increases in complement initiation components C1q, C3, and CR3, which are known to regulate microglial⁻synapse interactions. Specifically, we found significant accumulation of C1q on synapses within the hippocampus, which was paralleled by synapse loss 30 days post injury. We used genetic and pharmacological approaches to determine the mechanistic role of complement initiation on cognitive loss in aging animals after TBI. Notably, both genetic and pharmacological blockade of the complement pathway prevented memory deficits in aged injured animals. Thus, therapeutically targeting early components of the complement cascade represents a significant avenue for possible clinical intervention following TBI in the aging population.


Assuntos
Envelhecimento/patologia , Lesões Encefálicas Traumáticas/complicações , Proteínas do Sistema Complemento/metabolismo , Transtornos da Memória/etiologia , Microglia/patologia , Sinapses/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Contagem de Células , Doença Crônica , Contusões , Progressão da Doença , Feminino , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Modelos Biológicos , Fagocitose , Sinapses/metabolismo
8.
Magn Reson Med ; 74(3): 622-633, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25213126

RESUMO

PURPOSE: Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. METHODS: We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. RESULTS: We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. CONCLUSION: ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential.


Assuntos
Isótopos de Carbono/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono/análise , Isótopos de Carbono/química , Linhagem Celular Tumoral , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Camundongos , Imagens de Fantasmas , Ratos , Ratos Sprague-Dawley
9.
Mol Imaging Biol ; 26(2): 222-232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147265

RESUMO

Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.


Assuntos
Imageamento por Ressonância Magnética , Oncologia , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos
10.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951146

RESUMO

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Doenças Neuroinflamatórias , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Medula Óssea/metabolismo , Camundongos , Masculino , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
11.
STAR Protoc ; 4(4): 102617, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742175

RESUMO

Spatial transcriptomics couples visual spatial markers with gene expression levels, but slide space and cost limit the number of samples that can be processed. Here, we present a protocol for mounting brains from multiple mice onto a single capture area of a spatial transcriptomics slide. We describe steps for conjoining frozen hippocampal sections from different brains into a single cryostat block, reducing the quantity of reagents required. This protocol is applicable to a range of existing spatial genomics platforms. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Encéfalo , Genômica , Hipocampo
12.
Commun Med (Lond) ; 3(1): 71, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217574

RESUMO

BACKGROUND: In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS: We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS: We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS: In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.


Magnetic resonance imaging (MRI) is widely used in the clinic to diagnose multiple sclerosis (MS), which affects the central nervous system and leads to a range of disabling symptoms. However, MRI is often not capable of detecting how well a patient responds to therapies, in particular those targeting the immune system. We questioned whether an advanced MRI method called hyperpolarized 13C MRS could help. Using a mouse model for MS, we showed that hyperpolarized 13C MRS can detect response to two therapies used in the clinic, namely fingolimod and dimethyl fumarate when conventional MRI could not. We also showed that this method is sensitive to the immune response. As hyperpolarized 13C MRS is becoming available in many centers worldwide, it could be used to evaluate existing and new treatments for people living with MS, improving care and quality of life.

13.
Res Sq ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645937

RESUMO

Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates the potential of metabolic imaging to improve detection, classification and outcome prediction of previously undetected rTBI.

14.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945616

RESUMO

Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP 2 ) in brain capillary endothelial cells, leading to the loss of inwardly rectifier K + (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP 2 by converting it to phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD. One-sentence summary: PI3K inhibition rescues neurovascular coupling defects in cerebral small vessel disease.

15.
Sci Signal ; 16(811): eadi3966, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963192

RESUMO

Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.


Assuntos
Transdução de Sinais , Canais de Cátion TRPM , Camundongos , Animais , Humanos , Transporte de Íons , Vasoconstrição/fisiologia , Canais de Cátion TRPM/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo
16.
Cell Rep ; 42(4): 112335, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027294

RESUMO

Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.


Assuntos
Metabolismo Energético , Glicólise , Humanos , Feminino , Camundongos , Animais , Glicólise/fisiologia , Imageamento por Ressonância Magnética , Neurônios/metabolismo , Glucose/metabolismo
17.
Neuroimage ; 59(1): 193-201, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21807103

RESUMO

Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in humans. Because the phosphatidylinositol-3-kinase (PI3K) signaling pathway is activated in more than 88% of GBM, new drugs which target this pathway, such as the mTOR inhibitor Everolimus, are currently in clinical trials. Early tumor response to molecularly targeted treatments remains challenging to assess non-invasively, because it is often associated with tumor stasis or slower tumor growth. Innovative neuroimaging methods are therefore critically needed to provide metabolic or functional information that is indicative of targeted therapeutic action at early time points during the course of treatment. In this study, we demonstrated for the first time that hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) can be used on a clinical MR system to monitor early metabolic response of orthotopic GBM tumors to Everolimus treatment through measurement of the HP lactate-to-pyruvate ratios. The study was performed on a highly invasive non-enhancing orthotopic GBM tumor model in rats (GS-2 tumors), which replicates many fundamental features of human GBM tumors. Seven days after initiation of treatment there was a significant drop in the HP lactate-to-pyruvate ratio from the tumor tissue in treated animals relative to day 0 (67%±27% decrease). In the control group, no significant changes in the HP lactate-to-pyruvate ratios were observed. Importantly, at the 7 day time point, conventional MR imaging (MRI) was unable to detect a significant difference in tumor size between control and treated groups. Inhibition of tumor growth by conventional MRI was observed from day 15 of treatment. This implies that the decrease in the HP lactate-to-pyruvate ratio could be detected before any treatment-induced inhibition of tumor growth. Using immunohistochemical staining to further examine tumor response to treatment, we found that the decrease in the HP lactate-to-pyruvate ratio was associated with a drop in expression of lactate dehydrogenase, the enzyme that catalyzes pyruvate to lactate conversion. Also evident was decreased staining for carbonic anhydrase IX (CA-IX), an indicator of hypoxia-inducible factor 1α (HIF-1α) activity, which, in turn, regulates expression of lactate dehydrogenase. To our knowledge, this study is the first report of the use of HP 13C MRSI at a clinical field strength to monitor GBM response to molecularly targeted treatments. It highlights the potential of HP lactate-to-pyruvate ratio as an early biomarker of response, thereby supporting further investigation of this non-invasive imaging approach for eventual clinical application.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Espectroscopia de Ressonância Magnética/métodos , Neuroimagem/métodos , Sirolimo/análogos & derivados , Animais , Radioisótopos de Carbono/uso terapêutico , Modelos Animais de Doenças , Everolimo , Humanos , Masculino , Ratos , Ratos Nus , Sirolimo/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Proc Natl Acad Sci U S A ; 106(10): 3988-93, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234118

RESUMO

Neuroimaging methods have considerably developed over the last decades and offer various noninvasive approaches for measuring cerebral metabolic fluxes connected to energy metabolism, including PET and magnetic resonance spectroscopy (MRS). Among these methods, (31)P MRS has the particularity and advantage to directly measure cerebral ATP synthesis without injection of labeled precursor. However, this approach is methodologically challenging, and further validation studies are required to establish (31)P MRS as a robust method to measure brain energy synthesis. In the present study, we performed a multimodal imaging study based on the combination of 3 neuroimaging techniques, which allowed us to obtain an integrated picture of brain energy metabolism and, at the same time, to validate the saturation transfer (31)P MRS method as a quantitative measurement of brain ATP synthesis. A total of 29 imaging sessions were conducted to measure glucose consumption (CMRglc), TCA cycle flux (V(TCA)), and the rate of ATP synthesis (V(ATP)) in primate monkeys by using (18)F-FDG PET scan, indirect (13)C MRS, and saturation transfer (31)P MRS, respectively. These 3 complementary measurements were performed within the exact same area of the brain under identical physiological conditions, leading to: CMRglc = 0.27 +/- 0.07 micromol x g(-1) x min(-1), V(TCA) = 0.63 +/- 0.12 micromol x g(-1) x min(-1), and V(ATP) = 7.8 +/- 2.3 micromol x g(-1) x min(-1). The consistency of these 3 fluxes with literature and, more interestingly, one with each other, demonstrates the robustness of saturation transfer (31)P MRS for directly evaluating ATP synthesis in the living brain.


Assuntos
Trifosfato de Adenosina/biossíntese , Encéfalo/fisiologia , Metabolismo Energético/fisiologia , Imageamento Tridimensional/métodos , Animais , Ciclo do Ácido Cítrico , Fluordesoxiglucose F18 , Glucose/metabolismo , Haplorrinos , Espectroscopia de Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
19.
J Nucl Med ; 63(1): 140-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33837066

RESUMO

Lymphocytes and innate immune cells are key drivers of multiple sclerosis (MS) and are the main target of MS disease-modifying therapies (DMT). Ex vivo analyses of MS lesions have revealed cellular heterogeneity and variable T cell levels, which may have important implications for patient stratification and choice of DMT. Although MRI has proven valuable to monitor DMT efficacy, its lack of specificity for cellular subtypes highlights the need for complementary methods to improve lesion characterization. Here, we evaluated the potential of 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine (18F-FAraG) PET imaging to noninvasively assess infiltrating T cells and to provide, in combination with MRI, a novel tool to determine lesion types. Methods: We used a novel MS mouse model that combines cuprizone and experimental autoimmune encephalomyelitis to reproducibly induce 2 brain inflammatory lesion types, differentiated by their T cell content. 18F-FAraG PET imaging, T2-weighted MRI, and T1-weighted contrast-enhanced MRI were performed before disease induction, during demyelination with high levels of innate immune cells, and after T cell infiltration. Fingolimod immunotherapy was used to evaluate the ability of PET and MRI to detect therapy response. Ex vivo immunofluorescence analyses for T cells, microglia/macrophages, myelin, and blood-brain barrier (BBB) integrity were performed to validate the in vivo findings. Results:18F-FAraG signal was significantly increased in the brain and spinal cord at the time point of T cell infiltration. 18F-FAraG signal from white matter (corpus callosum) and gray matter (cortex, hippocampus) further correlated with T cell density. T2-weighted MRI detected white matter lesions independently of T cells. T1-weighted contrast-enhanced MRI indicated BBB disruption at the time point of T cell infiltration. Fingolimod treatment prevented motor deficits and decreased T cell and microglia/macrophage levels. In agreement, 18F-FAraG signal was decreased in the brain and spinal cord of fingolimod-treated mice; T1-weighted contrast-enhanced MRI revealed intact BBB, whereas T2-weighted MRI findings remained unchanged. Conclusion: The combination of MRI and 18F-FAraG PET enables detection of inflammatory demyelination and T cell infiltration in an MS mouse model, providing a new way to evaluate lesion heterogeneity during disease progression and after DMT. On clinical translation, these methods hold great potential for stratifying patients, monitoring MS progression, and determining therapy responses.


Assuntos
Esclerose Múltipla
20.
Neurotrauma Rep ; 3(1): 139-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35403104

RESUMO

Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles (N = 1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set, multi-dimensional analytics toward effective translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA