Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; : 106722, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39486775

RESUMO

The postnatal critical period of synaptic plasticity (CPsp) is characterized by profound neural network refinement, which is shaped by synaptic activity and sculpted by maturation of the GABAergic network. Even after therapeutic hypothermia (TH), neonatal hypoxia-ischemia (HI) impairs two triggers for the initiation of the CPsp in the hippocampus: i) PSA-NCAM developmental decline and ii) parvalbumin (PV) + interneuron (IN) maturation. Thus, we investigated whether neonatal HI despite TH disturbs other events governing the onset, consolidation and closure of the postnatal CPsp in the hippocampus. We induced cerebral HI in P10 C57BL6 mice with right carotid ligation and 45 m of hypoxia (FiO2 = 0.08), followed by normothermia (36 °C, NT) or TH (31 °C) for 4 h with anesthesia-exposed shams as controls. ELISA, immunoblotting and immunohistochemistry were performed at 24 h (P11), 5 days (P15), 8 days (P18) and 30 days (P40) after HI injury. We specifically assessed: i) BDNF levels and TrkB activation, controlling the CPsp, ii) Otx2 and NPTX2 immunoreactivity (IR), engaging CPsp onset and iii) NogoR1, Lynx1 IR, PNN formation and myelination (MBP) mediating CPsp closure. Pups aged to P40 also received a battery of tests assessing working memory. Here, we documented deficits in hippocampal BDNF levels and TrkB activation at P18 in response to neonatal HI even with TH. Neonatal HI impaired in the CA1 the developmental increase in PV, Otx2, and NPTX2 between P11 and P18, the colocalization of Otx2 and PV at P18 and P40, the accumulation of NPTX2 in PV+ dendrites at P18 and P40, and the expression of NogoR and Lynx1 at P40. Furthermore, neonatal HI decreased BDNF and impaired PNN development and myelination (MBP) at P40. Most of these abnormalities were insensitive to TH and correlated with memory deficits. Neonatal HI appears to disrupt many of the molecular and structural events initiating and consolidating the postnatal hippocampal CPsp, perhaps due to the early and delayed deficits in TrkB activation leading to memory deficits.

2.
Neurobiol Dis ; 200: 106629, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111704

RESUMO

Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aß plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aß deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais Recém-Nascidos , Neurônios Colinérgicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Neocórtex/metabolismo , Neocórtex/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/metabolismo , Presenilina-1/genética , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/genética , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/genética , Humanos , Masculino , Modelos Animais de Doenças
3.
Dev Neurosci ; 46(1): 55-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231858

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Assuntos
Imagem de Tensor de Difusão , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Imagem de Tensor de Difusão/métodos , Prognóstico , Hipóxia-Isquemia Encefálica/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Edema/complicações , Edema/patologia
4.
Dev Neurosci ; 46(2): 136-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37467736

RESUMO

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.


Assuntos
Eletroencefalografia , Hipóxia-Isquemia Encefálica , Recém-Nascido , Criança , Humanos , Projetos Piloto , Eletroencefalografia/métodos , Convulsões , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/terapia , Biomarcadores
5.
J Pediatr ; 273: 114158, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38889855

RESUMO

OBJECTIVE: To determine whether an enteral, clonidine-based sedation strategy (CLON) during therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy would decrease opiate use while maintaining similar short-term safety and efficacy profiles to a morphine-based strategy (MOR). STUDY DESIGN: This was a single-center, observational study conducted at a level IV neonatal intensive care unit from January 1, 2017, to October 1, 2021. From April 13, 2020, to August 13, 2020, we transitioned from MOR to CLON. Thus, patients receiving TH for hypoxic-ischemic encephalopathy were grouped to MOR (before April 13, 2020) and CLON (after August 13, 2020). We calculated the total and rescue morphine milligram equivalent/kg (primary outcome) and frequency of hemodynamic changes (secondary outcome) for both groups. RESULTS: The MOR and CLON groups (74 and 25 neonates, respectively) had similar baseline characteristics and need for rescue sedative intravenous infusion (21.6% MOR and 20% CLON). Both morphine milligram equivalent/kg and need for rescue opiates (combined bolus and infusions) were greater in MOR than CLON (P < .001). As days in TH advanced, a lower percentage of patients receiving CLON needed rescue opiates (92% on day 1 to 68% on day 3). Patients receiving MOR received a greater cumulative dose of dopamine and more frequently required a second inotrope and hydrocortisone for hypotension. MOR had a lower respiratory rate during TH (P = .01 vs CLON). CONCLUSIONS: Our CLON protocol is noninferior to MOR, maintaining perceived effectiveness and hemodynamic safety, with an apparently reduced need for opiates and inotropes.


Assuntos
Analgésicos Opioides , Clonidina , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Humanos , Clonidina/administração & dosagem , Clonidina/uso terapêutico , Recém-Nascido , Hipotermia Induzida/métodos , Masculino , Feminino , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Hipóxia-Isquemia Encefálica/terapia , Morfina/administração & dosagem , Morfina/uso terapêutico , Administração Oral , Hipnóticos e Sedativos/administração & dosagem , Unidades de Terapia Intensiva Neonatal
6.
Pediatr Res ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181984

RESUMO

BACKGROUND: The Vannucci procedure is widely used to model cerebral hypoxic-ischemic (HI) injury in neonatal rodents. Identifying minimally invasive biomarkers linked to brain injury would improve stratification of pups to experimental treatments. We hypothesized that extreme blood glucose (BG) and ß-hydroxybutyrate (bHB) levels immediately after HI will correlate with severity of brain injury in this model. METHODS: C57BL6 mice of both sexes underwent the Vannucci procedure with BG and bHB measured immediately after hypoxia. GFAP and α-fodrin were measured to assess injury severity at 4h, P11, P18 and P40. Open field (OF), Y-maze (YM), and Object-location task (OLT) were tested at P40. RESULTS: Clinical seizures-like stereotypies during hypoxia were associated with lower post-hypoxia BG in HI-injured mice. Low BG after HI was related to higher GFAP expression, higher α-fodrin breakdown, lower residual regional volume, and worse working memory. BG was superior to bHB in ROC analysis with BG threshold of <111 mg/dL providing 100% specificity with 72% sensitivity for hippocampal HI-injury. CONCLUSIONS: Post-hypoxic BG is a minimally invasive screening tool to identify pups with significant HI brain injury in the Vannucci model modified for mice improving our ability to stratify pups to experimental treatments to assess effectiveness. IMPACT: End hypoxic-ischemic blood glucose levels are a reliable and inexpensive biomarker to detect hypoxic-ischemic brain injury in mice. Screening with blood glucose levels post-hypoxia allows appropriate stratification of those mouse pups most likely to be injured to experimental treatments improving validity and translatability of the results. These findings provide biological plausibility to the clinical observation that extreme blood glucose levels relate to worse outcomes after hypoxia-ischemia.

7.
Dev Neurosci ; 45(5): 234-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37019088

RESUMO

Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of postnatal critical period of synaptic plasticity in the hippocampus of young adult IUGR mice with greater effects on females. A potential mechanism supporting such dimorphism may include oligodendrocyte dysfunction in IUGR females limiting myelination, allowing axonal overgrowth followed by a reactive glial-mediated synaptic pruning.

8.
Pediatr Res ; 94(6): 1958-1965, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37340101

RESUMO

BACKGROUND: Extremely low birth weight (ELBW) infants comprise a fragile population at risk for neurodevelopmental disabilities (NDD). Systemic steroids were previously associated with NDD, but more recent studies suggest hydrocortisone (HCT) may improve survival without increasing NDD. However, the effects of HCT on head growth adjusted for illness severity during NICU hospitalization are unknown. Thus, we hypothesize that HCT will protect head growth, accounting for illness severity using a modified neonatal Sequential Organ Failure Assessment (M-nSOFA) score. METHODS: We conducted a retrospective study that included infants born at 23-29 weeks gestational age (GA) and < 1000 g. Our study included 73 infants, 41% of whom received HCT. RESULTS: We found negative correlations between growth parameters and age, similar between HCT and control patients. HCT-exposed infants had lower GA but similar normalized birth weights; HCT-exposed infants also had higher illness severity and longer lengths of hospital stay. We found an interaction between HCT exposure and illness severity on head growth, such that infants exposed to HCT had better head growth compared to those not exposed to HCT when adjusted for illness severity. CONCLUSION: These findings emphasize the importance of considering patient illness severity and suggest that HCT use may offer additional benefits not previously considered. IMPACT: This is the first study to assess the relationship between head growth and illness severity in extremely preterm infants with extremely low birth weights during their initial NICU hospitalization. Infants exposed to hydrocortisone (HCT) were overall more ill than those not exposed, yet HCT exposed infants had better preserved head growth relative to illness severity. Better understanding of the effects of HCT exposure on this vulnerable population will help guide more informed decisions on the relative risks and benefits for HCT use.


Assuntos
Hidrocortisona , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Humanos , Recém-Nascido , Lactente , Hidrocortisona/uso terapêutico , Estudos Retrospectivos , Recém-Nascido Prematuro , Gravidade do Paciente
9.
Pediatr Res ; 93(7): 1943-1954, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34923579

RESUMO

BACKGROUND: To determine the association of gestational age (GA) and day of life (DOL) with the circulating serum concentration of six brain injury-associated biomarkers in non-brain injured neonates born between 23 and 41 weeks' GA. METHODS: In a multicenter prospective observational cohort study, serum CNS-insult, inflammatory and trophic proteins concentrations were measured daily in the first 7 DOL. RESULTS: Overall, 3232 serum samples were analyzed from 745 enrollees, median GA 32.3 weeks. BDNF increased 3.7% and IL-8 increased 8.9% each week of gestation. VEGF, IL-6, and IL-10 showed no relationship with GA. VEGF increased 10.8% and IL-8 18.9%, each DOL. IL-6 decreased by 15.8% each DOL. IL-10 decreased by 81.4% each DOL for DOL 0-3. BDNF did not change with DOL. Only 49.67% of samples had detectable GFAP and 33.15% had detectable NRGN. The odds of having detectable GFAP and NRGN increased by 53% and 11%, respectively, each week after 36 weeks' GA. The odds of having detectable GFAP and NRGN decreased by 15% and 8%, respectively, each DOL. CONCLUSIONS: BDNF and IL-8 serum concentrations vary with GA. VEGF and interleukin concentrations are dynamic in the first week of life, suggesting circulating levels should be adjusted for GA and DOL for clinically relevant assessment of brain injury. IMPACT: Normative data of six brain injury-related biomarkers is being proposed. When interpreting serum concentrations of brain injury biomarkers, it is key to adjust for gestational age at birth and day of life during the first week to correctly assess for clinical brain injury in neonates. Variation in levels of some biomarkers may be related to gestational and postnatal age and not necessarily pathology.


Assuntos
Lesões Encefálicas , Interleucina-10 , Recém-Nascido , Humanos , Interleucina-6 , Estudos Prospectivos , Fator Neurotrófico Derivado do Encéfalo , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Idade Gestacional , Biomarcadores , Lesões Encefálicas/diagnóstico
10.
Dev Neurosci ; 44(4-5): 214-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34933306

RESUMO

INTRODUCTION: Intrauterine growth restriction (IUGR) from hypertensive disease of pregnancy complicates up to 10% of all pregnancies. Significant hippocampal-dependent cognitive and memory impairments as well as neuropsychiatric disorders have been linked to IUGR. Because disturbance of the hippocampal critical period (CPd) of synaptic plasticity leads to impairments similar to those described in IUGR human offspring, we hypothesized that IUGR would perturb the CPd of synaptic plasticity in the mouse hippocampus in our model. METHODS: IUGR was produced by a micro-osmotic pump infusion of the potent vasoconstrictor U-46619, a thromboxane A2-agonist, at embryonic day 12.5 in C57BL/6J mouse dams to precipitate hypertensive disease of pregnancy and IUGR. Sham-operated mice acted as controls. At P10, P18, and P40, we assessed astrogliosis using GFAP-IHC. In dorsal CA1 and CA3 subfields, we assessed the immunoreactivities (IR) (IF-IHC) to (i) parvalbumin (PV) and glutamate decarboxylase (GAD) 65/67, involved in CPd onset; (ii) PSA-NCAM that antagonizes CPd onset; (iii) NPTX2, necessary for excitatory synapse formation and engagement of CPd; and (iv) MBP and WFA, staining perineural nets (PNNs), marking CPd closure. ImageJ/Fiji and IMARIS were used for image processing and SPSS v24 for statistical analysis. RESULTS: Although PV+ interneuron numbers and IR intensity were unchanged, development of GAD65/67+ synaptic boutons was accelerated at P18 IUGR mice and inversely correlated with decreased expression of PSA-NCAM in the CA of P18 IUGR mice at P18. NPTX2+ puncta and total volume were persistently decreased in the CA3 pyramidal and radiatum layers of IUGR mice from P18 to P40. At P40, axonal myelination (MBP+) in CA3 of IUGR mice was decreased and correlated with NPTX2 deficits. Lastly, the volume and integrity of the PNNs in the dorsal CA was disrupted in IUGR mice at P40. DISCUSSION/CONCLUSION: IUGR disrupts the molecular and structural initiation, consolidation, and closure of the CPd of synaptic plasticity in the mouse hippocampus in our model, which may explain the learning and memory deficits observed in juvenile IUGR mice and the cognitive disorders seen in human IUGR offspring. The mechanistic links warrant further investigation, to identify therapeutic targets to prevent neurodevelopmental deficits in patients affected by IUGR.


Assuntos
Retardo do Crescimento Fetal , Hipertensão , Animais , Feminino , Hipocampo/metabolismo , Humanos , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Gravidez
11.
J Pediatr ; 246: 34-39.e3, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460699

RESUMO

OBJECTIVE: To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN: Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS: The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS: During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.


Assuntos
Displasia Broncopulmonar , Síndrome do Desconforto Respiratório do Recém-Nascido , Biomarcadores/sangue , Displasia Broncopulmonar/diagnóstico , Citocinas/sangue , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-10 , Interleucina-6 , Interleucina-8 , Gravidez , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Fator A de Crescimento do Endotélio Vascular/sangue
12.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613949

RESUMO

Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.


Assuntos
Memória de Curto Prazo , Parvalbuminas , Receptor ErbB-4 , Animais , Camundongos , Hipocampo/metabolismo , Hipóxia/metabolismo , Interneurônios/metabolismo , Isquemia/metabolismo , Memória de Curto Prazo/fisiologia , Neuregulina-1/metabolismo , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Receptor ErbB-4/metabolismo , Transdução de Sinais/fisiologia
13.
Neurobiol Dis ; 148: 105222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309937

RESUMO

Since neonatal hypoxia-ischemia (HI) disrupts the hippocampal (Hp) GABAergic network in the mouse and Hp injury in this model correlates with flurothyl seizure susceptibility only in male mice, we hypothesized that GABAergic disruption correlates with flurothyl seizure susceptibility in a sex-specific manner. C57BL6 mice were exposed to HI (Vannucci model) versus sham procedures at P10, randomized to normothermia (NT) or therapeutic hypothermia (TH), and subsequently underwent flurothyl seizure testing at P18. Only in male mice, Hp atrophy correlated with seizure susceptibility. The number of Hp parvalbumin positive interneurons (PV+INs) decreased after HI in both sexes, but TH attenuated this deficit only in females. In males only, seizure susceptibility directly correlated with the number of PV+INs, but not somatostatin or calretinin expressing INs. Hp GABAB receptor subunit levels were decreased after HI, but unrelated to later seizure susceptibility. In contrast, Hp GABAA receptor α1 subunit (GABAARα1) levels were increased after HI. Adjusting the number of PV+ INs for their GABAARα1 expression strengthened the correlation with seizure susceptibility in male mice. Thus, we identified a novel Hp sex-specific GABA-mediated mechanism of compensation after HI that correlates with flurothyl seizure susceptibility warranting further study to better understand potential clinical translation.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Interneurônios/metabolismo , Animais , Animais Recém-Nascidos , Convulsivantes/toxicidade , Suscetibilidade a Doenças , Flurotila/toxicidade , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Interneurônios/fisiologia , Camundongos , Parvalbuminas , Convulsões/induzido quimicamente , Fatores Sexuais
14.
Pediatr Res ; 89(1): 223-230, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268341

RESUMO

BACKGROUND: Cooling delays, temperature outside 33-34 °C, and blood pressure below the mean arterial blood pressure with optimal cerebral autoregulation (MAPOPT) might diminish neuroprotection from therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy (HIE). We hypothesized that longer time to reach temperature <34 °C and having temperature outside 33-34 °C would be associated with worse autoregulation and greater brain injury. METHODS: Neonates with HIE had rectal temperature and near-infrared spectroscopy autoregulation monitoring during hypothermia (n = 63) and rewarming (n = 58). All underwent brain MRI, and a subset received diffusion tensor imaging MRI before day 10 (n = 41). RESULTS: Most neonates reached <34 °C at 3-6 h of life. MAPOPT was identified in 54/63 (86%) during hypothermia and in 53/58 (91%) during rewarming. Cooling time was not related to blood pressure deviation from MAPOPT. Later cooling was associated with lower ADC scalar in unilateral posterior centrum semiovale but not in other regions. Temperatures >34 °C were associated with blood pressure above MAPOPT but not with brain injury. CONCLUSIONS: In neonates who were predominantly cooled after 3 h, cooling time was not associated with autoregulation or overall brain injury. Blood pressure deviation above MAPOPT was associated with temperature >34 °C. Additional studies are needed in a more heterogeneous population. IMPACT: Cooling time to reach target hypothermia temperature within 6 h of birth did not affect cerebral autoregulation measured by NIRS in neonates with hypoxic-ischemic encephalopathy (HIE). Temperature fluctuations >33-34 °C were associated with blood pressures that exceeded the range of optimal autoregulatory vasoreactivity. Cooling time within 6 h of birth and temperatures >33-34 °C were not associated with qualitative brain injury on MRI. Regional apparent diffusion coefficient scalars on diffusion tensor imaging MRI were not appreciably affected by cooling time or temperature >33-34 °C. Additional research in a larger and more heterogeneous population is needed to determine how delayed cooling and temperatures beyond the target hypothermia range affect autoregulation and brain injury.


Assuntos
Hipotermia Induzida , Hipóxia-Isquemia Encefálica/terapia , Doenças do Recém-Nascido/terapia , Pressão Arterial , Circulação Cerebrovascular , Imagem de Difusão por Ressonância Magnética , Feminino , Homeostase , Humanos , Hipotermia Induzida/efeitos adversos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/fisiopatologia , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/fisiopatologia , Unidades de Terapia Intensiva Neonatal , Masculino , Projetos Piloto , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo , Resultado do Tratamento
15.
J Comput Assist Tomogr ; 44(5): 687-691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32842070

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is associated with dysfunctional cerebral autoregulation. Resistive index (RI) measured in the anterior cerebral artery on transfontanellar head ultrasound is a noninvasive measure of blood flow and may indicate autoregulation dysfunction. We tested whether RI was associated with brain injury on diffusion tensor imaging magnetic resonance imaging (MRI). MATERIALS AND METHODS: Seventy-five neonates who underwent therapeutic hypothermia for HIE were enrolled. Resistive index values were obtained from head ultrasound performed at the end of therapeutic hypothermia. Apparent diffusion coefficient scalars were measured on MRIs performed before day of life 10. RESULTS: Lower RI was associated with lower apparent diffusion coefficient in the centrum semiovale, basal ganglia, thalamus, and posterior limb of the internal capsule. Combining RI and Apgar scores improved the ability to distinguish injury severity on MRI relative to either metric alone. CONCLUSIONS: Low RI correlated with worse brain injury on diffusion tensor imaging and may serve as an early marker of brain injury in cooled HIE neonates.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Lesões Encefálicas/epidemiologia , Lesões Encefálicas/fisiopatologia , Feminino , Cabeça/diagnóstico por imagem , Humanos , Hipóxia-Isquemia Encefálica/epidemiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Recém-Nascido , Masculino , Fluxo Pulsátil/fisiologia
16.
Dev Neurosci ; : 1-15, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30861522

RESUMO

Hippocampal injury following neonatal hypoxia-ischemia (HI) leads to memory impairments despite therapeutic hypothermia (TH). In the hippocampus, the expression of calbindin-1 (Calb1), a Ca2+-buffering protein, increases during postnatal development and decreases with aging and neurodegenerative disorders. Since persistent Ca2+ dysregulation after HI may lead to ongoing injury, persistent changes in hippocampal expression of Calb1 may contribute to memory impairments after neonatal HI. We hypothesized that, despite TH, neonatal HI persistently decreases Calb1 expression in the hippocampus, a change associated with memory deficits in the mouse. We induced cerebral HI in C57BL6 mice at postnatal day 10 (P10) with right carotid ligation and 45 min of hypoxia (FiO2 = 0.08), followed by normothermia (36°C, NT) or TH (31°C) for 4 h with anesthesia-shams as controls. Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry (IHC) were used to grade brain injury and astrogliosis at P11, P18, and P40 prior to the assessment of Calb1 expression by IHC. The subset of mice followed to P40 also performed a memory behavior task (Y-maze) at P22-P26. Nonparametric statistics stratified by sex were applied. In both anterior and posterior coronal brain sections, hippocampal Calb1 expression doubled between P11 and P40 due to an increase in the cornus ammonis (CA) field (Kruskal-Wallis [KW] p < 0.001) and not the dentate gyrus (DG). Neonatal HI produced delayed (P18) and late (P40) deficits in the expression of Calb1 exclusively in the CA field (KW p = 0.02) in posterior brain sections. TH did not attenuate Calb1 deficits after HI. Thirty days after HI injury (at P40), GFAP scores in the hippocampus (p < 0.001, r = -0.47) and CA field (p < 0.001, r = -0.39) of posterior brain sections inversely correlated with their respective Calb1 expression. Both sexes demonstrated deficits in Y-maze testing, including approximately 40% lower spontaneous alterations performance and twice as much total impairment compared to sham mice (KW p < 0.001), but it was only in females that these deficits correlated with the Calb1 expression in the hippocampal CA field (p < 0.05) of the posterior sections. Hippocampal atrophy after neonatal HI also correlated with worse deficits in Y-maze testing, but it did not predict Calb1 deficits. Neonatal HI produces a long-lasting Calb1 deficit in the hippocampal CA field during development, which is not mitigated by TH. Late Calb1 deficit after HI may be the result of persistent astrogliosis and can lead to memory impairment, particularly in female mice.

17.
Dev Neurosci ; : 1-10, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30820019

RESUMO

Hypoxic-ischemic encephalopathy is a common neonatal brain injury associated with significant morbidity and mortality despite the administration of therapeutic hypothermia (TH). Neonatal seizures and subsequent chronic epilepsy are frequent in this patient population and current treatments are partially effective. We used a neonatal murine hypoxia-ischemia (HI) model to test whether the severity of hippocampal and cortical injury predicts seizure susceptibility 8 days after HI and whether TH mitigates this susceptibility. HI at postnatal day 10 (P10) caused hippocampal injury not mitigated by TH in male or female pups. TH did not confer protection against flurothyl seizure susceptibility at P18 in this model. Hippocampal (R2 = 0.33, p = 0.001) and cortical (R2 = 0.33, p = 0.003) injury directly correlated with seizure susceptibility in male but not female pups. Thus, there are sex-specific consequences of neonatal HI on flurothyl seizure susceptibility in a murine neonatal HI model. Further studies are necessary to elucidate the underlying mechanisms of sex dimorphism in seizure susceptibility after neonatal HI.

18.
Hippocampus ; 28(8): 617-630, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781223

RESUMO

Delayed hippocampal injury and memory impairments follow neonatal hypoxia-ischemia (HI) despite the use of therapeutic hypothermia (TH). Death of hippocampal pyramidal cells occurs acutely after HI, but characterization of delayed cell death and injury of interneurons (INs) is unknown. We hypothesize that injury of INs after HI is: (i) asynchronous to that of pyramidal cells, (ii) independent of injury severity, and (iii) unresponsive to TH. HI was induced in C57BL6 mice at p10 with unilateral right carotid ligation and 45 min of hypoxia (FiO2 = 0.08). Mice were randomized to normothermia (36 °C, NT) or TH (31 °C) for 4 hr after HI and anesthesia-exposed shams were use as controls. Brains were studied at 24 hr (p11) or 8 days (p18) after HI. Vglut1, GAD65/67, PSD95, parvalbumin (PV) and calbindin-1 (Calb1) were measured. Cell death was assessed using cresyl violet staining and TUNEL assay. Hippocampal atrophy and astroglyosis at p18 were used to assess injury severity and to correlate with number of PV + INs. VGlut1 level decreased by 30% at 24 hr after HI, while GAD65/67 level decreased by ∼50% in forebrain 8 days after HI, a decrease localized in CA1 and CA3. PSD95 levels decreased in forebrain by 65% at 24 hr after HI and remained low 8 days after HI. PV + INs increased in numbers (per mm2 ) and branching between p11 and p18 in sham mice but not in NT and TH mice, resulting in 21-52% fewer PV + INs in injured mice at p18. Calb1 protein and mRNA were also reduced in HI injured mice at p18. At p18, somatodendritic attrition of INs was evident in all injured mice without evidence of cell death. Neither hippocampal atrophy nor astroglyosis correlated with the number of PV + INs at p18. Thus, HI exposure has long lasting effects in the hippocampus impairing the development of the GABAergic system with only partial protection by TH independent of the degree of hippocampal injury. © 2018 Wiley Periodicals, Inc.


Assuntos
Hipocampo/patologia , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Interneurônios/patologia , Animais , Animais Recém-Nascidos , Calbindina 1/genética , Calbindina 1/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Lateralidade Funcional , Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Tubulina (Proteína)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
20.
Dev Neurosci ; 39(1-4): 257-272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196356

RESUMO

BACKGROUND: Despite treatment with therapeutic hypothermia (TH), infants who survive hypoxic ischemic (HI) encephalopathy (HIE) have persistent neurological abnormalities at school age. Protection by TH against HI brain injury is variable in both humans and animal models. Our current preclinical model of hypoxia-ischemia (HI) and TH displays this variability of outcomes in neuropathological and neuroimaging end points with some sexual dimorphism. The detailed behavioral phenotype of this model is unknown. Whether there is sexual dimorphism in certain behavioral domains is also not known. Brain-derived neurotrophic factor (BDNF) supports neuronal cell survival and repair but may also be a marker of injury. Here, we characterize the behavioral deficits after HI and TH stratified by sex, as well as late changes in BDNF and its correlation with memory impairment. METHODS: HI was induced in C57BL6 mice on postnatal day 10 (p10) (modified Vannucci model). Mice were randomized to TH (31°C) or normothermia (NT, 36°C) for 4 h after HI. Controls were anesthesia-exposed, age- and sex-matched littermates. Between p16 and p39, growth was followed, and behavioral testing was performed including reflexes (air righting, forelimb grasp and negative geotaxis) and sensorimotor, learning, and memory skills (open field, balance beam, adhesive removal, Y-maze tests, and object location task [OLT]). Correlations between mature BDNF levels in the forebrain and p42 memory outcomes were studied. RESULTS: Both male and female HI mice had an approximately 8-12% lower growth rate (g/day) than shams (p ≤ 0.01) by p39. TH ameliorated this growth failure in females but not in males. In female mice, HI injury prolonged the time spent at the periphery (open field) at p36 (p = 0.004), regardless of treatment. TH prevented motor impairments in the balance beam and adhesive removal tests in male and female mice, respectively (p ≤ 0.05). Male and female HI mice visited the new arm of the Y-maze 12.5% (p = 0.05) and 10% (p = 0.03) less often than shams, respectively. Male HI mice also had 35% lower exploratory preference score than sham (p ≤ 0.001) in the OLT. TH did not prevent memory impairments found with Y-maze testing or OLT in either sex (p ≤ 0.01) at p26. At p42, BDNF levels in the forebrain ipsilateral to the HI insult were 1.7- to 2-fold higher than BDNF levels in the sham forebrain, and TH did not prevent this increase. Higher BDNF levels in the forebrain ipsilateral to the insult correlated with worse performance in the Y-maze in both sexes and in OLT in male mice (p = 0.01). CONCLUSIONS: TH provides benefit in specific domains of behavior following neonatal HI. In general, these benefits accrued to both males and females, but not in all areas. In some domains, such as memory, no benefit of TH was found. Late differences in individual BDNF levels may explain some of these findings.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/metabolismo , Animais , Animais Recém-Nascidos , Asfixia Neonatal/complicações , Asfixia Neonatal/metabolismo , Feminino , Hipóxia-Isquemia Encefálica/complicações , Masculino , Transtornos Mentais/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA