Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Plast ; 2020: 6283754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273890

RESUMO

The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKß-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.


Assuntos
Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Sinapses/patologia , alfa-Sinucleína/metabolismo , Adenoviridae/fisiologia , Animais , Vetores Genéticos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , alfa-Sinucleína/administração & dosagem
2.
Toxicol Mech Methods ; 30(5): 350-357, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32189544

RESUMO

Rotenone is a mitochondrial complex I inhibitor, which can cause the death of dopaminergic (DA) neurons and Parkinson's disease (PD). Currently, whether metformin has a protective effect on neurotoxicity induced by rotenone is unclear. The purpose of this study was to evaluate the potential protective effect of metformin against rotenone-induced neurotoxicity. PD animal model was established by unilateral rotenone injection into the right substantia nigra (SN) of C57BL/6 mice. The behavioral tests were performed by rotarod test and cylinder test. The numbers of TH-positive neurons and Iba-1 positive microglia in the SN were investigated by immunohistochemical staining. The mRNA levels of proinflammatory cytokines (TNF-α and IL-1ß) and molecules involved in endoplasmic reticulum (ER) stress (ATF4, ATF6, XBP1, Grp78, and CHOP) in the midbrain were detected by Quantitative real-time PCR. This study showed that 50 mg/kg metformin given orally daily, beginning 3 d before rotenone injection and continuing for 4 weeks following rotenone injection, significantly ameliorated dyskinesia, increased the number of TH-positive neurons, and mitigated the activation of microglia in the SN in rotenone-induced PD mice. Furthermore, 50 mg/kg metformin markedly downregulated the expression of proinflammatory cytokines (TNF-α and IL-1ß) and ER stress-related genes (ATF4, ATF6, XBP1, Grp78, and CHOP) in rotenone-induced PD mice. Metformin has a protective effect on DA neurons against rotenone-induced neurotoxicity through inhibiting neuroinflammation and ER stress in PD mouse model.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Metformina/farmacologia , Doença de Parkinson Secundária/prevenção & controle , Substâncias Protetoras/farmacologia , Rotenona/toxicidade , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/imunologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Inflamação , Interleucina-1beta/metabolismo , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/imunologia , Substâncias Protetoras/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
3.
Neural Regen Res ; 18(10): 2268-2277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056147

RESUMO

Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model. A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of > 2 mm is used to induce severe brain injury. However, the different effects and underlying mechanisms of these two model types have not been proven. This study investigated the changes in cerebral blood flow, differences in the degree of cortical damage, and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3, 4, and 5 m/s. We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute (7 days) and chronic phases (30 days). The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased, and swelling and bulging of brain tissue, increased vascular permeability, and large-scale exudation occurred. In the 2 mm group, the main pathological changes were decreased cerebral blood flow, brain tissue loss, and cerebral vasospasm occlusion in the injured area. Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group; at 30 days after injury, the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted. Transcriptome sequencing showed that compared with the 1 mm group, the 2 mm group expressed more ferroptosis-related genes. Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7, the mitochondria in both groups shrank and the vacuoles became larger; on day 30, the mitochondria in the 1 mm group became larger, and the vacuoles in the 2 mm group remained enlarged. By analyzing the proportion of mitochondrial subgroups in different groups, we found that the model mice had different patterns of mitochondrial composition at different time periods, suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes. Taken together, differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury. Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines.

4.
Front Aging Neurosci ; 14: 842380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004003

RESUMO

Multiple factors such as genes, environment, and age are involved in developing Parkinson's disease (PD) pathology. However, how various factors interact to cause PD remains unclear. Here, 3-month and 9-month-old hα-syn+⁣/- mice were treated with low-dose rotenone for 2 months to explore the mechanisms that underline the environment-gene-age interaction in the occurrence of PD. We have examined the behavior of mice and the PD-like pathologies of the brain and gut. The present results showed that impairments of the motor function and olfactory function were more serious in old hα-syn+/- mice with rotenone than that in young mice. The dopaminergic neuron loss in the SNc is more in old hα-syn+/- mice with rotenone than in young mice. Expression of hα-syn+/- is increased in the SNc of hα-syn+/- mice following rotenone treatment for 2 months. Furthermore, the number of activated microglia cells increased in SNc and accompanied the high expression of inflammatory cytokines, namely, TNF-α and IL-18 in the midbrain of old hα-syn+/- mice treated with rotenone. Meanwhile, we found that after treatment with rotenone, hα-syn positive particles deposited in the intestinal wall, intestinal microflora, and T lymphocyte subtypes of Peyer's patches changed, and intestinal mucosal permeability increased. Moreover, these phenomena were age-dependent. These findings suggested that rotenone aggravated the PD-like pathologies and affected the brain and gut of human α-syn+/- transgenic mice in an age-dependent manner.

5.
Biochim Biophys Acta Gen Subj ; 1864(1): 129422, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31491457

RESUMO

BACKGROUND: Previous studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in ß-cells, resulting in ß-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in ß-cell damage are unclear. METHODS: Synthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the ß-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated. RESULTS: The five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate. CONCLUSION: Free fatty acids and anionic phospholipid can promote ß-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused ß-cell death in high lipid environment. GENERAL SIGNIFICANCE: Our study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet ß-cells.


Assuntos
Apoptose/genética , Fibrose/genética , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Amiloide/genética , Amiloide/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Estresse do Retículo Endoplasmático/genética , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Ácido Palmítico/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína
6.
Front Aging Neurosci ; 11: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507407

RESUMO

The accumulation of human islet amyloid polypeptide (hIAPP) in pancreatic islets under induction by a high-fat diet plays a critical role in the development of type-2 diabetes mellitus (T2DM). T2DM is a risk factor of late-onset Alzheimer's disease (AD). Nevertheless, whether hIAPP in combination with hyperlipidemia may lead to AD-like pathological changes in the brain remains unclear. hIAPP transgenic mice were fed with a high-fat diet for 6 or 12 months to establish the T2DM model. The accumulation of amylin, the numbers of Fluoro-Jade C (FJC)-positive and ß-gal positive cells, and the deposition level of Aß42 in the hippocampi of the transgenic mice were detected by using brain sections. Cytoplasmic and membrane proteins were extracted from the hippocampi of the transgenic mice, and the ratio of membrane GLUT4 expression to cytoplasmic GLUT4 expression was measured through Western blot analysis. Changes in the cognitive functions of hIAPP transgenic mice after 12 months of feeding with a high-fat diet were evaluated. hIAPP transgenic mice fed with a high-fat diet for 6 or 12 months showed elevated blood glucose levels and insulin resistance; increased amylin accumulation, number of FJC-positive and ß-gal positive cells, and Aß42 deposition in the hippocampi; and reduced membrane GLUT4 expression levels. hIAPP transgenic mice fed with a high-fat diet for 12 months showed reductions in social cognitive ability and passive learning ability. A high-fat diet increased amylin accumulation in the hippocampi of hIAPP transgenic mice, which presented AD-like pathology and behavior characterized by neural degeneration, brain aging, Aß42 deposition, and impaired glucose utilization and cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA