Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551407

RESUMO

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Assuntos
Carboidratos , Metais , Metais/química , Carboidratos/química , Conformação Molecular , Aminoácidos
2.
Nat Chem ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227421

RESUMO

The storage of hydrogen is key to its applications. Developing adsorbent materials with high volumetric and gravimetric storage capacities, both of which are essential for the efficient use of hydrogen as a fuel, is challenging. Here we report a controlled catenation strategy in hydrogen-bonded organic frameworks (RP-H100 and RP-H101) that depends on multiple hydrogen bonds to guide catenation in a point-contact manner, resulting in high volumetric and gravimetric surface areas, robustness and ideal pore diameters (~1.2-1.9 nm) for hydrogen storage. This approach involves assembling nine imidazole-annulated triptycene hexaacids into a secondary hexagonal superstructure containing three open channels through which seven of the hexagons interpenetrate to form a seven-fold catenated superstructure. RP-H101 exhibits high deliverable volumetric (53.7 g l-1) and gravimetric (9.3 wt%) capacities for hydrogen under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). This work illustrates the virtues of supramolecular crystals as promising candidates for hydrogen storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA