Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203787

RESUMO

Lung cancer is considered the number one cause of cancer-related deaths worldwide. Although current treatments initially reduce the lung cancer burden, relapse occurs in most cases; the major causes of mortality are drug resistance and cancer stemness. Recent investigations have provided evidence that shikonin generates various bioactivities related to the treatment of cancer. We used shikonin to treat multi-resistant non-small lung cancer cells (DOC-resistant A549/D16, VCR-resistant A549/V16 cells) and defined the anti-cancer efficacy of shikonin. Our results showed shikonin induces apoptosis in these ABCB1-dependent and independent chemoresistance cancer sublines. Furthermore, we found that low doses of shikonin inhibit the proliferation of lung cancer stem-like cells by inhibiting spheroid formation. Concomitantly, the mRNA level and protein of stemness genes (Nanog and Oct4) were repressed significantly on both sublines. Shikonin reduces the phosphorylated Akt and p70s6k levels, indicating that the PI3K/Akt/mTOR signaling pathway is downregulated by shikonin. We further applied several signaling pathway inhibitors that have been used in anti-cancer clinical trials to test whether shikonin is suitable as a sensitizer for various signaling pathway inhibitors. In these experiments, we found that low doses shikonin and dual PI3K-mTOR inhibitor (BEZ235) have a synergistic effect that inhibits the spheroid formation from chemoresistant lung cancer sublines. Inhibiting the proliferation of lung cancer stem cells is believed to reduce the recurrence of lung cancer; therefore, shikonin's anti-drug resistance and anti-cancer stem cell activities make it a highly interesting molecule for future combined lung cancer therapy.


Assuntos
Imidazóis , Neoplasias Pulmonares , Naftoquinonas , Quinolinas , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Resistencia a Medicamentos Antineoplásicos
2.
Cancer Cell Int ; 23(1): 212, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743493

RESUMO

BACKGROUND: Research studies have demonstrated that Midkine (MDK) can influence the expression and activity of Renin-angiotensin system (RAS) components. Angiotensin II is involved in tumor growth and angiogenesis in different cancers. We previously observed Angiotensin II receptor blockers (ARBs) improve the survival rates of patients with oral cancers. These findings have prompted us to investigate whether MDK can influence the RAS pathway, mainly through its association with angiotensin II type 1 receptor (AT1R), which contributes to the observed poor prognosis in head and neck squamous cell carcinoma (HNSCC) patients. METHODS: MDK and AT1R expressions were examined in 150 HNSCC patients post-operation by immunohistochemical staining between 1 January 2010 and 31 December 2016. We tested the over-expression and silencing of MDK to evaluate the AT1R expression and functional biological assays in HNSCC cell lines HSC-3 and SAS. RESULTS: Positive expression of MDK is correlated with positive AT1R expression. MDK predicted poor NSCC patients' survival. Silencing MDK could suppress AT1R and pAKT expression and reduce the growth, migration, and invasion of HNSCC cells. ARB also inhibits MDK stimulating HNSCC cell proliferation. Overexpression of MDK could upregulate AT1R and pAKT. CONCLUSIONS: MDK is an independent prognostic factor of HNSCC post-operation, and AT1R regulates HNSCC cell growth, invasion, and migration. Positive MDK and AT1R expressions are highly correlated. Mechanistically, the interaction between MDK and AT1R is crucial for MDK-mediated cell viability, and inhibiting AT1R can effectively counteract or abolish these effects. Furthermore, MDK exerts a regulatory role in the expression of AT1R, as well as in the growth and motility of HNSCC cells. These findings highlight the involvement of the interaction between MDK, AT1R, and the pAkt signaling pathways in HNSCC cell viability growth.

3.
J Cell Physiol ; 237(9): 3671-3686, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861939

RESUMO

Myosin-related proteins play an important role in cancer progression. However, the clinical significance, biological functions, and mechanisms of myosin 1B (MYO1B), in esophageal squamous cell carcinoma (ESCC) remain unclear. The clinical relevance of MYO1B, SNAI2, and cyclin D1 in ESCC was determined by immunohistochemistry, Oncomine, and GEPIA databases. The oncogenic roles of MYO1B were determined by CCK8, colony formation assays, wound healing, and Transwell assay. MYO1B, SNAI2, and cyclin D1 at mRNA and protein levels in ESCC cells were detected by qPCR and Western blot analysis. In our study, we found that MYO1B expression was increased in ESCC tissue samples and correlated with tumor stage, TNM stage, and poor outcomes. Functional assays indicated that depletion of MYO1B impaired oncogenesis, and enhanced chemosensitivity in ESCC. Bioinformatic analysis and mechanistic studies illustrated that SNAI2 was a key downstream effector of MYO1B. Suppression of MYO1B downregulated expression of SNAI2, thereby inhibiting the SNAI2/cyclin D1 pathway. Furthermore, a selective inhibitor of cyclin D1 activation reversed siMYO1B cells overexpressing SNAI2-elicited aggressive phenotypes of ESCC cells. MYO1B positively correlated with SNAI2 and cyclin D1 in ESCC samples, and higher SNAI2 expression was also associated with poor prognosis in ESCC patients. Our finding demonstrated that MYO1B activates the SNAI2/cyclin D1 pathway to drive tumorigenesis and cisplatin cytotoxicity in ESCC, indicating that MYO1B is a potential therapeutic target for patients with ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Miosinas/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
4.
Biochem Biophys Res Commun ; 617(Pt 2): 11-17, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689837

RESUMO

Exposure to particulate matter 2.5 (PM2.5) has been linked to ocular surface diseases, yet knowledge of the molecular mechanism impacted on retina pathogenesis is limited. Therefore, the purpose of this study was to explore the effects and involved factors of PM2.5 exposure in human retinal pigment epithelial APRE-19 cells. Our data revealed a decreased cell viability and an increased migratory ability in APRE-19 cells after PM2.5 stimulation. The MMP-2 and MMP-9 protein levels were markedly increased while the MMPs regulators TIMP-1 and TIMP-2 were significantly reduced in PM2.5-exposed APRE-19 cells. PM2.5 also increased pro-MMP-2 expression in the cell culture supernatants. Additionally, PM2.5 promoted the EMT markers through the activation of PI3K/AKT/mTOR pathway. Moreover, the ICAM-1 production was also remarkably increased by PM2.5 but reduced by PI3K/AKT inhibitor LY294002 in APRE-19 cells. Taken together, these results suggest that PM2.5 promotes EMT in a PI3K/AKT/mTOR-dependent manner in the retinal pigment epithelium.


Assuntos
Material Particulado , Fosfatidilinositol 3-Quinases , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Material Particulado/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628510

RESUMO

Leptin is a crucial regulator of metabolism and energy homeostasis in mammals. Many studies have investigated the impacts of leptin on human cancers, such as proliferation and metastasis. However, the mechanisms underlying leptin-mediated regulation of lipid metabolism in nasopharyngeal carcinoma (NPC) remain incompletely understood. In the current study, leptin downregulation ameliorated lipid accumulation, triglyceride, and cholesterol levels. Mechanistically, diminished leptin by siRNA not only inhibited sterol regulatory element-binding protein 1 (SREBP1), a master regulator of lipid metabolism, at the mRNA and protein levels, but also reduced SREBP1 downstream target expressions, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1), in NPC cells. In addition, leptin expression could modulate the promoter activity of SREBP1. We also found that pharmacological inhibition of poly-ADP ribose polymerase-γ (PPAR-γ) resulted in increased SREBP1 expression in leptin-depleted NPC cells. Functionally, SREBP1 overexpression overcame the effects of leptin-silencing attenuated triglyceride level, cholesterol level and cell survival in NPC cells. Taken together, our results demonstrate that leptin is an important regulator of lipid metabolism in NPC cells and might could be a potential therapeutic target for treatment of NPC patients.


Assuntos
Leptina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína de Ligação a Elemento Regulador de Esterol 1 , Colesterol , Inativação Gênica , Humanos , Leptina/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos
6.
BMC Cancer ; 21(1): 979, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465286

RESUMO

BACKGROUND: Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) has been identified as a histone 3 lysine 27 (H3K27) demethylase and acted as a tumor suppressor gene or oncogenic function. The current study was to explore the significance of UTX in oral tongue squamous cell carcinoma (OTSCC) patients who received surgical resection. METHODS: A total of 148 OTSCC patients who underwent surgical resection were identified, including 64 patients (43%) with overexpression of UTX and 84 patients (57%) harboring low expression of UTX. We also used two OTSCC cell lines, SAS and Cal 27, to determine the modulation of cancer. Chi-square test was used to investigate the difference of categorical variables between the groups; survival outcome was analyzed using the Kaplan-Meier method in univariate analysis, and a Cox regression model was performed for multivariate analyses. RESULTS: Univariate and multivariate analyses showed overexpression of UTX were significantly related to worse disease-free survival (P = 0.028) and overall survival (P = 0.029). The two OTSCC cell lines were treated with GSK-J4, a potent inhibitor of UTX, and transwell migration and invasion assays showed an inhibitory effect with a dose-dependent manner. In addition, western blot analyses also revealed the inhibition of cell cycle and epithelial-mesenchymal transition. CONCLUSION: Our study suggests that UTX plays an important role in the process of OTSCC and overexpression of UTX may predict poor prognosis in OTSCC patients who received surgical resection.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Histona Desmetilases/metabolismo , Neoplasias Bucais/patologia , Neoplasias da Língua/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/cirurgia , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Neoplasias Bucais/cirurgia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Neoplasias da Língua/metabolismo , Neoplasias da Língua/cirurgia
7.
Cancer Cell Int ; 18: 219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618491

RESUMO

BACKGROUND: ESPN (Espin), an actin filament-binding protein, plays an important role in regulating the organization, dimensions, dynamics, and signaling capacities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in various mechanosensory and chemosensory cells. Recent few studies show that ESPN regulates metastasis and cell proliferation in melanoma. However, the significance of ESPN in other cancers such as esophageal squamous cell carcinoma (ESCC) remains largely unknown. METHODS: Immunohistochemistry was performed in 169 patients with ESCC and correlated with clinicopathological features and survival. The functional role of ESPN in ESCC cells was determined by ESPN-mediated siRNA. RESULTS: Univariate analyses showed that high ESPN expression was associated with inferior overall survival (P = 0.005) and disease-free survival (P = 0.035). High ESPN expression was an independent prognosticator in multivariate analysis for overall survival (P = 0.009, hazard ratio = 1.688) and disease-free survival (P = 0.049, hazard ratio = 1.451). The 5-year overall survival rates were 30% and 54% in patients with high and low expression of ESPN, respectively. Inhibition of endogenous ESPN in ESCC cells decreased ESCC growth by reducing cell proliferating rates. CONCLUSIONS: High ESPN expression is independently associated with poor prognosis in patients with ESCC and downregulation of ESPN inhibits ESCC cell growth. Our results suggest that ESPN may be a novel therapeutic target for patients with ESCC.

8.
Int J Mol Sci ; 19(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351209

RESUMO

The dysregulation of the ubiquitously transcribed TPR gene on the X chromosome (UTX) has been reported to be involved in the oncogenesis of several types of cancers. However, the expression and significance of UTX in esophageal squamous cell carcinoma (ESCC) remains largely undetermined. Immunohistochemistry was performed in 106 ESCC patients, and correlated with clinicopathological features and survival. The functional role of UTX in ESCC cells was determined by UTX-mediated siRNA. Univariate analyses showed that high UTX expression was associated with superior overall survival (OS, p = 0.011) and disease-free survival (DFS, p = 0.01). UTX overexpression was an independent prognosticator in multivariate analysis for OS (p = 0.013, hazard ratio = 1.996) and DFS (p = 0.009, hazard ratio = 1.972). The 5-year OS rates were 39% and 61% in patients with low expression and high expression of UTX, respectively. Inhibition of endogenous UTX in ESCC cells increased cell viability and BrdU incorporation, and decreased the expression of epithelial marker E-cadherin. Immunohistochemically, UTX expression was also positively correlated with E-cadherin expression. High UTX expression is independently associated with a better prognosis in patients with ESCC and downregulation of UTX increases ESCC cell growth and decreases E-cadherin expression. Our results suggest that UTX may be a novel therapeutic target for patients with ESCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Histona Desmetilases/genética , Proteínas Nucleares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Caderinas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Prognóstico
9.
Am J Physiol Heart Circ Physiol ; 313(4): H700-H707, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778914

RESUMO

The last two decades have seen the emergence of Cre-Lox recombination as one of the most powerful and versatile technologies for cell-specific genetic engineering of mammalian cells. Understandably, the primary concerns in the practice of Cre-Lox recombination are whether the predicted genome has been correctly modified and the targeted phenotypes expressed. Rarely are the physiological conditions of the animals routinely examined because the general assumption is that they are normal. Based on corroborative results from radiotelemetric recording, power spectral analysis, and magnetic resonance imaging/diffusion tensor imaging in brain-derived neurotrophic factor-floxed mice, the present study revealed that this assumption requires amendment. We found that despite comparable blood pressure and heart rate with C57BL/6 or Cre mice under the conscious state, floxed and Cre-Lox mice exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex. We further found that the capacity and plasticity of baroreflex of these two strains of mice under isoflurane anesthesia were retarded, as reflected by reduced connectivity between the nucleus tractus solitarii and rostral ventrolateral medulla or nucleus ambiguus. The identification of anomalous baroreflex functionality inherent in floxed and Cre-Lox mice points to the importance of incorporating physiological phenotypes into studies that engage gene manipulations such as Cre-Lox recombination.NEW & NOTEWORTHY We established that anomalous baroreflex functionality is inherent in floxed and Cre-Lox mice. These two mouse strains exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex under the conscious state, retarded capacity and plasticity of baroreflex under isoflurane anesthesia, and reduced connectivity between key nuclei in the baroreflex neural circuits.


Assuntos
Barorreflexo/genética , Pressão Sanguínea/genética , Frequência Cardíaca/genética , Reflexo Anormal/genética , Anestésicos Inalatórios/farmacologia , Animais , Animais Geneticamente Modificados , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Estado de Consciência , Imagem de Tensor de Difusão , Frequência Cardíaca/fisiologia , Integrases , Isoflurano/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais , Fenótipo , Reflexo Anormal/efeitos dos fármacos , Reflexo Anormal/fisiologia , Núcleo Solitário/fisiopatologia , Nervo Vago/fisiopatologia , Sistema Vasomotor
10.
BMC Cancer ; 17(1): 395, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28576144

RESUMO

BACKGROUND: CUL4A has been known for its oncogenic properties in various human cancers. However, its role in intrahepatic cholangiocarcinoma (iCCA) has not been explored. METHODS: We retrospectively investigated 105 iCCA cases from a single medical institution. Tissue microarrays were used for immunohistochemical analysis of CUL4A expression. CUL4A expression vectors were introduced in cell lines. Cell migration and invasion assays were used to compare the mobility potential of iCCA cells under basal conditions and after manipulation. Then we evaluated the effects of CUL4A on the cell growth by proliferation assay, and further checked the susceptibility to cisplatin in iCCA cells with or without CUL4A overexpression. RESULTS: CUL4A overexpression was detected in 34 cases (32.4%). Patients with CUL4A-overexpressing tumors exhibited shortened disease-free survival (mean, 27.7 versus 90.4 months; P = 0.011). In the multivariate analysis model, CUL4A overexpression was shown to be an independent unfavorable predictor for disease-free survival (P = 0.045). Moreover, stably transfected CUL4A-overexpressing iCCA cell lines displayed an increased mobility potential and enhanced cell growth without impact on susceptibility to cisplatin. CONCLUSIONS: Our data demonstrate that overexpression of CUL4A plays an oncogenic role in iCCA and adversely affects disease-free survival. Thus, it may prove to be a powerful prognostic factor and a potential therapeutic target.


Assuntos
Biomarcadores Tumorais/genética , Colangiocarcinoma/genética , Proteínas Culina/genética , Prognóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Análise Serial de Tecidos
11.
BMC Pediatr ; 17(1): 89, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347279

RESUMO

BACKGROUND: Both respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are important viral pathogens causing respiratory tract infection (RTI) in the pediatric population. However, the clinical manifestations of RSV and hMPV infections are similar. Therefore, a reliable and rapid diagnostic tool is needed for diagnostic performance. METHODS: In order to optimize diagnosis efficiency of RTI, the aim of this study is to establish a rapid and advanced method for simultaneous detecting RSV and hMPV in nasopharyngeal aspirates specimens from patients. We designed a one-step triplex real-time RT-PCR (qRT-PCR) protocol using TaqMan probes for detecting RSV and hMPV. The plasmid clones containing RSV nucleoprotein gene and hMPV fusion gene were established as reference standards. We used virus culture supernatants from 86 known pediatric RTI patient to test the specificity and sensitivity of our assay. Then we used total 222 nasopharyngeal aspirates specimens from pediatric patients hospitalized with respiratory symptoms to evaluate our assay. RESULTS: Our one-step triplex qRT-PCR assay showed 100% sensitivity and specificity in testing RSV and hMPV in 86 known virus culture supernatants, with excellent linearity (R2 > 0.99) and reliable reproducibility (CV lower than 1.04%). This assay has a wide dynamic range 102-109copies/reaction (limit of detection; LOD = 100 copies/reaction). A total of 222 patients hospitalized with respiratory symptoms were enrolled for clinical evaluation. In these samples, our qRT-PCR assay detected 68 RSV positive and 18 hMPV positive cases. However, standard virus culture only detected 8 RSV positive cases and 0 hMPV cases. Based on this improved triplex qRT-PCR assay, we found that RSV infection was associated with severe inflammation by chest X-ray and occurrence of pneumonia which were not observed previously. CONCLUSIONS: In summary, we have developed a highly specific and sensitive one-step triplex qRT-PCR assay to detect hMPV and RSV simultaneously. This assay offers a valuable tool for routine diagnosis.


Assuntos
Metapneumovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Paramyxoviridae/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções Respiratórias/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes , Infecções Respiratórias/virologia , Sensibilidade e Especificidade
12.
Tumour Biol ; 37(2): 1995-2005, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26334621

RESUMO

CD105 is rich in endothelium cells and is involved in angiogenesis. Higher microvascular density of tumor is also related to the prognosis in a variety of cancers. In this present study, patients with positive N classification, advanced T classification, advanced TNM stage, extracapsular spread of lymph nodes (ECS), and perineural invasion had significantly higher levels of peripheral vein (pCD105) and venous return from tumor (tCD105) in 71 patients with OSCC compared to 13 healthy volunteers. Those with higher pCD105 or tCD105 levels had significantly poorer 5-year disease-specific survival rate (DDS) and overall survival rate (OS). The tCD105 and pCD105 levels and ECS were the independent prognostic factors by the multivariate analysis according to the Cox regression model in 5-year DDS and OS rate. SAS and SCC4 cells treated with CD105 showed the increase in migration, invasion, and proliferation in vitro and in vivo. Furthermore, CCL20 expression participated in CD105-elicited cell motility in oral cancer cells. In conclusion, higher level of circulating CD105 is related to adverse pathological features among patients with OSCC. It is also a useful marker for evaluating the prognosis and targeting therapeutics of OSCC.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/patologia , Endoglina/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Bucais/patologia , Neovascularização Patológica/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Intervalo Livre de Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Reação em Cadeia da Polimerase , Prognóstico , Modelos de Riscos Proporcionais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transfecção
13.
BMC Cancer ; 16: 532, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27461108

RESUMO

BACKGROUND: Saikosaponin d (SSd) is one of the main active triterpene saponins in Bupleurum falcatum. It has a steroid-like structure, and is reported to have pharmacological activities, including liver protection in rat, cell cycle arrest and apoptosis induction in several cancer cell lines. However, the biological functions and molecular mechanisms of mammalian cells under SSd treatment are still unclear. METHODS: The cytotoxicity and apoptosis of hepatic stellate cells (HSCs) upon SSd treatment were discovered by MTT assay, colony formation assay and flow cytometry. The collage I/III, caspase activity and apoptotic related genes were examined by quantitative PCR, Western blotting, immunofluorescence and ELISA. The mitochondrial functions were monitored by flow cytometry, MitoTracker staining, ATP production and XF24 bioenergetic assay. RESULTS: This study found that SSd triggers cell death via an apoptosis path. An example of this path might be typical apoptotic morphology, increased sub-G1 phase cell population, inhibition of cell proliferation and activation of caspase-3 and caspase-9. However, the apoptotic effects induced by SSd are partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK, suggesting that SSd may trigger both HSC-T6 and LX-2 cell apoptosis through caspase-3-dependent and independent pathways. We also found that SSd can trigger BAX and BAK translocation from the cytosol to the mitochondria, resulting in mitochondrial function inhibition, membrane potential disruption. Finally, SSd also increases the release of apoptotic factors. CONCLUSIONS: The overall analytical data indicate that SSd-elicited cell death may occur through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian HSCs, and thus can delay the formation of liver fibrosis by reducing the level of HSCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Bupleurum/química , Inibidores de Caspase/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Oligopeptídeos/farmacologia , Ratos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico
14.
Biochim Biophys Acta ; 1843(3): 565-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361335

RESUMO

58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. Currently, the mechanisms underlying the oncogenic effect of MSP58 are not fully understood. The human telomerase reverse transcriptase (hTERT) gene, which encodes an essential component for telomerase activity that is involved in cellular immortalization and transformation, is strictly regulated at the gene transcription level. Our previous study revealed a novel function of MSP58 in cellular senescence. Here we identify telomerase transcriptional element-interacting factor (TEIF) as a novel MSP58-interacting protein and determine the effect of MSP58 on hTERT transcription. This study thus provides evidence showing MSP58 to be a negative regulator of hTERT expression and telomerase activity. Luciferase reporter assays indicated that MSP58 could suppress the transcription ofhTERTpromoter. Additionally, stable overexpression of MSP58 protein in HT1080 and 293T cells decreased both endogenous hTERT expression and telomerase activity. Conversely, their upregulation was induced by MSP58 silencing. Chromatin immunoprecipitation assays showed that MSP58 binds to the hTERT proximal promoter. Furthermore, overexpression of MSP58 inhibited TEIF-mediated hTERT transactivation, telomerase activation, and cell proliferation promotion. The inhibitory effect of MSP58 occurred through inhibition of TEIF binding to DNA. Ultimately, the HT1080-implanted xenograft mouse model confirmed these cellular effects. Together, our findings provide new insights into both the biological function of MSP58 and the regulation of telomerase/hTERT expression.


Assuntos
Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Linhagem Celular , Núcleo Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transcrição Gênica , Ativação Transcricional , Regulação para Cima
15.
Mol Cancer ; 14: 83, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25889801

RESUMO

BACKGROUND: Head and neck cancer (HNC) is a highly invasive cancer. Aurora-A has been reported for a number of malignancies. However, the identity of downstream effectors responsible for its aggressive phenotype in HNC remains underinvestigated. METHODS: The mRNA and protein expression levels of Aurora-A and FLJ10540 were assessed in HNC specimens and cell lines using RT-qPCR, western blot, Oncomine, and microarray database analysis. The downstream molecular mechanisms of Aurora-A were confirmed by RT-qPCR, western blot, luciferase reporter, confocal microscopy analyses, immunoprecipitation, colony formation, cell viability, and xenograft model. Cellular functions in response to Aurora-A-modulated downstream targets such as FLJ10540 and MMPs were examined in vitro and in vivo, including cell growth, motility and chemosensitivity. Aurora-A/FLJ10540/MMPs expression was determined in cancer and adjacent normal tissues from HNC patients by immunohistochemistry approach. RESULTS: In the current study, Aurora-A exhibited similar gene expression profiles with FLJ10540 by using accessibly public microarray and Oncomine database analysis, raising the possibility that these molecules might coordinately participate in cancer progression and metastasis of HNC. These two molecules connection were also examined in cell lines and tissues of HNC. Aurora-A overexpression could not only bind to the promoter of FLJ10540 to induce FLJ10540 expression, but also increase both mRNA and protein levels of MMP-7 and MMP-10 in HNC cells. Conversely, depletion of Aurora-A expression by using siRNA or Aurora-A kinase inhibitor, MLN8237, suppressed FLJ10540, MMP-7 and MMP-10 mRNA and protein expressions in vitro and in vivo. In addition, the FLJ10540-PI3K complex was destroyed by inhibition the Aurora-A kinase activity. Forced overexpression of FLJ10540 in Aurora-A-depleted or in MLN8237-treated HNC cells attenuated the effect on cytotoxicity to cisplatin. Elevated Aurora-A expression in HNC cells led to the characteristics of more aggressive malignancy, including enhanced chemoresistance and increased the abilities of proliferation, migration and invasion, which was required for FLJ10540/MMP-7 or FLJ10540/MMP-10 expressions. Finally, immunohistochemical analysis of human HNC specimens showed a significant positively correlation among Aurora-A, FLJ10540, MMP-7 and MMP-10 expressions. CONCLUSION: Together, our findings define a novel mechanism by which Aurora-A promotes cell malignancy, with potential implications for understanding the clinical action of Aurora-A.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Neoplasias de Cabeça e Pescoço/genética , Proteínas Nucleares/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metaloproteinases da Matriz/genética , Invasividade Neoplásica/genética , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro/genética
16.
J Biomed Sci ; 22: 33, 2015 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25981436

RESUMO

BACKGROUND: MSP58 is a nucleolar protein associated with rRNA transcription and cell proliferation. Its mechanism of translocation into the nucleus or the nucleolus, however, is not entirely known. In order to address this lack, the present study aims to determine a crucial part of this mechanism: the nuclear localization signal (NLS) and the nucleolar localization signal (NoLS) associated with the MSP58 protein. RESULTS: We have identified and characterized two NLSs in MSP58. The first is located between residues 32 and 56 (NLS1) and constitutes three clusters of basic amino acids (KRASSQALGTIPKRRSSSRFIKRKK); the second is situated between residues 113 and 123 (NLS2) and harbors a monopartite signal (PGLTKRVKKSK). Both NLS1 and NLS2 are highly conserved among different vertebrate species. Notably, one bipartite motif within the NLS1 (residues 44-56) appears to be absolutely necessary for MSP58 nucleolar localization. By yeast two-hybrid, pull-down, and coimmunoprecipitation analysis, we show that MSP58 binds to importin α1 and α6, suggesting that nuclear targeting of MSP58 utilizes a receptor-mediated and energy-dependent import mechanism. Functionally, our data show that both nuclear and nucleolar localization of MSP58 are crucial for transcriptional regulation on p21 and ribosomal RNA genes, and context-dependent effects on cell proliferation. CONCLUSIONS: Results suggest that MSP58 subnuclear localization is regulated by two nuclear import signals, and that proper subcellular localization of MSP58 is critical for its role in transcriptional regulation. Our study reveals a molecular mechanism that controls nuclear and nucleolar localization of MSP58, a finding that might help future researchers understand the MSP58 biological signaling pathway.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Nucléolo Celular/metabolismo , Humanos , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Alinhamento de Sequência
17.
Neurobiol Dis ; 71: 292-304, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25131447

RESUMO

Pressor response after stroke commonly leads to early death or susceptibility to stroke recurrence, and detailed mechanisms are still lacking. We assessed the hypothesis that the renin-angiotensin system contributes to pressor response after stroke by differential modulation of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) in the rostral ventrolateral medulla (RVLM), a key brain stem site that maintains blood pressure. We also investigated the beneficial effects of a novel renin inhibitor, aliskiren, against stroke-elicited pressor response. Experiments were performed in male adult Sprague-Dawley rats. Stroke induced by middle cerebral artery occlusion elicited significant pressor response, accompanied by activation of angiotensin II (Ang II)/type I receptor (AT1R) and AT2R signaling, depression of Ang-(1-7)/MasR and Ang IV/AT4R cascade, alongside augmentation of MCP-1/C-C chemokine receptor 2 (CCR2) signaling and neuroinflammation in the RVLM. Stroke-elicited pressor response was significantly blunted by antagonism of AT1R, AT2R or MCP-1/CCR2 signaling, and eliminated by applying Ang-(1-7) or Ang IV into the RVLM. Furthermore, stroke-activated MCP-1/CCR2 signaling was enhanced by AT1R and AT2R activation, and depressed by Ang-(1-7)/MasR and Ang IV/AT4R cascade. Aliskiren inhibited stroke-elicited pressor response via downregulating MCP-1/CCR2 activity and reduced neuroinflammation in the RVLM; these effects were potentiated by Ang-(1-7) or Ang IV. We conclude that whereas Ang II/AT1R or Ang II/AT2R signaling in the brain stem enhances, Ang-(1-7)/MasR or Ang IV/AT4R antagonizes pressor response after stroke by differential modulations of MCP-1 in the RVLM. Furthermore, combined administration of aliskiren and Ang-(1-7) or Ang IV into the brain stem provides more effective amelioration of stroked-induced pressor response.


Assuntos
Angiotensinas/metabolismo , Pressão Sanguínea/fisiologia , Tronco Encefálico/metabolismo , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica/fisiologia , Acidente Vascular Cerebral/patologia , Análise de Variância , Angiotensinas/genética , Animais , Isquemia Encefálica/complicações , Quimiocina CCL2/genética , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Exame Neurológico , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo
18.
Am J Pathol ; 182(2): 516-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23219753

RESUMO

The functions of Rap-1A in oral carcinogenesis are largely unexplored. In this study, we examined the expression of Rap-1A at different malignant stages of oral cavity squamous cell carcinoma (OCSCC). Semiquantitative RT-PCR, quantitative RT-PCR, and Western blotting were used to evaluate Rap-1A mRNA and protein expressions, respectively, in paired OCSCC patient specimens. To determine the possible correlation between Rap-1A expression and various clinical characteristics, 256 samples from patients with OCSCC were evaluated by immunohistochemical staining. Strong Rap-1A expression was a significant prognostic marker and predictor of aggressive OCSCC. The overall and disease-specific 5-year survival rates were significantly correlated with strong expression of Rap-1A (P < 0.001). Functionally, overexpressed Rap-1A could promote oral cancer cell migration and invasion by Transwell chambers and wound healing assay. Conversely, the suppression of Rap-1A expression using Rap-1A-mediated siRNA was sufficient to decrease cell motility. Furthermore, our data also illustrated that Aurora-A could not only induce mRNA and protein expressions of Rap-1A for enhancing cancer cell motility but also co-localize and form a complex with Rap-1A in the oral cancer cell line. Finally, immunohistochemical staining, indirect immunofluorescence, and Western blotting analysis of human aggressive OCSCC specimens revealed a significantly positive correlation between Rap-1A and Aurora-A expression. Taken together, our results suggest that the Aurora-A/Rap-1A pathway is associated with survival, tumor progression, and metastasis of OCSCC patients.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/enzimologia , Neoplasias Bucais/patologia , Boca/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aurora Quinases , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Boca/enzimologia , Neoplasias Bucais/genética , Invasividade Neoplásica , Prognóstico , Modelos de Riscos Proporcionais , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Análise de Regressão , Fatores de Risco , Análise de Sobrevida , Regulação para Cima/genética , Proteínas rap1 de Ligação ao GTP/genética
19.
BMC Mol Cell Biol ; 25(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172660

RESUMO

BACKGROUND: Fas-associated factor 1 (FAF1) is a multidomain protein that interacts with diverse partners to affect numerous cellular processes. Previously, we discovered two Small Ubiquitin-like Modifier (SUMO)-interacting motifs (SIMs) within FAF1 that are crucial for transcriptional modulation of mineralocorticoid receptor. Recently, we identified Sin3A-associated protein 130 (SAP130), a putative sumoylated protein, as a candidate FAF1 interaction partner by yeast two-hybrid screening. However, it remained unclear whether SAP130 sumoylation might occur and functionally interact with FAF1. RESULTS: In this study, we first show that SAP130 can be modified by SUMO1 at Lys residues 794, 878 and 932 both in vitro and in vivo. Mutation of these three SUMO-accepting Lys residues to Ala had no impact on SAP130 association with Sin3A or its nuclear localization, but the mutations abrogated the association of SAP130 with the FAF1. The mutations also potentiated SAP130 trans-repression activity and attenuated SAP130-mediated promotion of cell growth. Additionally, SUMO1-modified SAP130 was less stable than unmodified SAP130. Transient transfection experiments further revealed that FAF1 mitigated the trans-repression and cell proliferation-promoting functions of SAP130, and promoted SAP130 degradation by enhancing its polyubiquitination in a sumoylation-dependent manner. CONCLUSIONS: Together, these results demonstrate that sumoylation of SAP130 regulates its biological functions and that FAF1 plays a crucial role in controlling the SUMO-dependent regulation of transcriptional activity and protein stability of SAP130.


Assuntos
Sumoilação , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Ubiquitinação , Estabilidade Proteica
20.
J Biol Chem ; 287(27): 22533-48, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22563078

RESUMO

The nucleolar 58-kDa microspherule protein (MSP58) protein is a candidate oncogene implicated in modulating cellular proliferation and malignant transformation. In this study, we show that knocking down MSP58 expression caused aneuploidy and led to apoptosis, whereas ectopic expression of MSP58 regulated cell proliferation in a context-dependent manner. Specifically, ectopic expression of MSP58 in normal human IMR90 and Hs68 diploid fibroblasts, the H184B5F5/M10 mammary epithelial cell line, HT1080 fibrosarcoma cells, primary mouse embryonic fibroblasts, and immortalized NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular morphology, and increased senescence-associated ß-galactosidase activity. MSP58-driven senescence was strictly dependent on the presence of functional p53 as revealed by the fact that normal cells with p53 knockdown by specific shRNA or cells with a mutated or functionally impaired p53 pathway were effective in bypassing MSP58-induced senescence. At least two senescence mechanisms are induced by MSP58. First, MSP58 activates the DNA damage response and p53/p21 signaling pathways. Second, MSP58, p53, and the SWI/SNF chromatin-remodeling subunit Brahma-related gene 1 (BRG1) form a ternary complex on the p21 promoter and collaborate to activate p21. Additionally, MSP58 protein levels increased in cells undergoing replicative senescence and stress-induced senescence. Notably, the results of analyzing expression levels of MSP58 between tumors and matched normal tissues showed significant changes (both up- and down-regulation) in its expression in various types of tumors. Our findings highlight new aspects of MSP58 in modulating cellular senescence and suggest that MSP58 has both oncogenic and tumor-suppressive properties.


Assuntos
Senescência Celular/fisiologia , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/genética , Fibrossarcoma , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA