Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Med Res Rev ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188075

RESUMO

The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.

2.
J Am Chem Soc ; 146(9): 6307-6316, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381876

RESUMO

Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.


Assuntos
Cobre , Glicina , Cobre/química , Alquilação , Peptídeos/química , Catálise
3.
Bioorg Chem ; 147: 107340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593532

RESUMO

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Assuntos
Fármacos Anti-HIV , Compostos de Bifenilo , Desenho de Fármacos , Transcriptase Reversa do HIV , HIV-1 , Quinazolinas , Inibidores da Transcriptase Reversa , Solubilidade , Humanos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/síntese química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/síntese química , Relação Estrutura-Atividade
4.
Bioorg Chem ; 148: 107495, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805850

RESUMO

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Assuntos
Desenho de Fármacos , HIV-1 , Simulação de Acoplamento Molecular , Pirimidinas , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Estrutura Molecular , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo
5.
BMC Pediatr ; 24(1): 204, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519960

RESUMO

BACKGROUND: Central nervous system leukemia (CNSL) is one of the major causes of the poor prognosis of childhood leukemia. We aimed to compare the sensitivity of cytomorphology (CM) and flow cytometry (FCM) in diagnosing CNSL, emphasizing the importance of FCM in the diagnosis process. METHODS: One-hundred-sixty-five children with newly diagnosed B-cell Acute Lymphoblastic Leukemia (B-cell ALL) were included in this study. Cerebrospinal fluid (CSF) samples were taken for routine CSF analysis, CM analysis, and FCM examination. Computed tomography scans and/or magnetic resonance imaging were performed at diagnosis. Patients with CNS2, CNS3, and traumatic lumbar puncture (TLP) at diagnosis received two additional courses of triple intrathecal injections during induction treatment. We compared the sensitivity of FCM and CM in the diagnosis of children with CNSL. RESULTS: One hundred and twenty-eight (77.58%) CSF samples were negative by either CM or FCM (CM-/FCM-), four (2.42%) were positive by both CM and FCM (CM+/FCM+), and thirty-three (20%) displayed a single positive finding by FCM (CM-/FCM+) (p = 0.044). By adding two intrathecal injections in the induction treatment, ten children with TLP+ had no CNS relapse, like those with TLP-. However, compared to CNS1 and TLP, the event-free survival (EFS) did not significantly improve in patients with CNS2 and CNS3. Moreover, CNSL status was associated with worse 3-year EFS (p < 0.05). CONCLUSIONS: We have validated that FCM is more accurate in stratifying the status of the CNS compared to CM analysis. However, to improve the EFS rate of childhood leukemia, it is necessary to combine CM examination, FCM, and cranial imaging for the early diagnosis of CNSL.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Citometria de Fluxo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/diagnóstico , Recidiva , China , Prognóstico
6.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731530

RESUMO

Hydroformylation of olefins is widely used in the chemical industry due to its versatility and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.

7.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731613

RESUMO

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Assuntos
Fármacos Anti-HIV , Simulação de Acoplamento Molecular , Pirimidinas , Relação Quantitativa Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Humanos , Simulação de Dinâmica Molecular , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Estrutura Molecular
8.
Angew Chem Int Ed Engl ; 63(4): e202313952, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994255

RESUMO

16ß-Methylcorticoids are among the most important glucocorticoid steroids for the treatment of various dermatological disorders, respiratory infections, and other allergic reactions elicited during inflammatory responses of the human body. Betamethasone dipropionate, clobetasol propionate, and beclomethasone dipropionate are particularly noteworthy for their synthetic intractability. Despite five decades of research, these 16ß-methylcorticoids have remained challenging synthetic targets owing to insurmountable issues of reactivity, selectivity, and cost efficiency associated with all previously explored strategies. We herein report our practicability-oriented strategy toward the unified stereoselective synthesis of 16ß-methylcorticoids in 12.6-14.0 % overall yield from commercially available 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). In this approach, the chiral C16ß-Me and C17α-OH groups of the corticosteroid D ring were installed via a substrate-controlled diastereo- and enantioselective Mn-catalyzed oxidation-reduction hydration of Δ4,9(11),16 -triene-3,20-dione. The C1-C2 double bond of the corticosteroid A ring was constructed using an unprecedented engineered 3-ketosteroid-Δ1 -dehydrogenase (MK4-KstD)-catalyzed regioselective Δ1 -dehydrogenation of Δ4,9(11) -diene-3,21-dione. This strategy provides a general method and a key precursor for the divergent synthesis of a variety of glucocorticoids and related steroidal drugs.


Assuntos
Beclometasona , Clobetasol , Humanos , Clobetasol/uso terapêutico , Betametasona/uso terapêutico , Esteroides , Corticosteroides
9.
Angew Chem Int Ed Engl ; : e202407149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949229

RESUMO

This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92 % yield, 99 % ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton. Computational results revealed that hydrogen bonding was crucial in stabilizing intermediates and inducing different addition reactions during the acyl-Pictet-Spengler cyclization cascade. By strategically using these two reactions and the late-stage diversification of the functionalized indoloquinolizidine core, the asymmetric total syntheses of eight tacaman alkaloids were achieved. This study may potentially advance research related to the medicinal chemistry of tacaman alkaloids.

10.
Angew Chem Int Ed Engl ; 63(36): e202409004, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837495

RESUMO

Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.

11.
Biochem Biophys Res Commun ; 652: 103-111, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36841097

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Sulfatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Oligossacarídeos/farmacologia , Proliferação de Células , Movimento Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Cytokine ; 170: 156294, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549487

RESUMO

BACKGROUND: Premature ovarian failure (POF), as a gynecological endocrine disease, features the manifestation of irregular menstruation, amenorrhea, infertility and perimenopausal syndrome. MicroRNAs (miRNAs) have been reported to modulate POF. However, the specific regulatory mechanism of miR-497-3p in POF remain unclear. METHODS: Quantitative reverse transcription-PCR (RT-qPCR) and western blot were implemented to analyze RNA and protein levels, respectively. Comet assay was performed for the detection of DNA damage. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure apoptosis of CTX-induced KGN cell (POF cell model). Bioinformatics was utilized to screen out the downstream mRNAs potentially regulated by miR-497-3p. Chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and RNA pulldown assays were performed to demonstrate the interaction between miR-497-3p and Kruppel-like factor 4 (KLF4) or between KLF4 and Klotho (KL). Rescue assays were performed to verify the involvement of Klotho in miR-497-3p-mediated functions of POF cell model. RESULTS: MiR-497-3p was upregulated in CTX-treated KGN cells. Knockdown of miR-497-3p could reverse the promoting effects of CTX on DNA damage and cell apoptosis. MiR-497-3p negatively regulated Klotho expression by directly targeting the transcription activator KLF4. KLF4 activated Klotho transcription. MiR-497-3p inactivated PI3K/AKT/mTOR signaling pathway through KLF4/Klotho axis. Klotho knockdown reversed the effects of MiR-497-3p on the functions of POF cell model. CONCLUSION: MiR-497-3p promotes DNA damage and apoptosis in CTX-treated KGN cells by targeting KLF4 to downregulate Klotho and inactivate the PI3K/AKT/mTOR signaling pathway. This study unveils novel mechanisms associated with cell functional changes in POF and may enrich therapeutic strategy for POF.


Assuntos
Menopausa Precoce , MicroRNAs , Insuficiência Ovariana Primária , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Ovariana Primária/genética , Fator 4 Semelhante a Kruppel , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
13.
Toxicol Appl Pharmacol ; 458: 116326, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436566

RESUMO

Zinc finger protein 671 (ZNF671) has been described as a vital cancer inhibitor in multiple neoplasms, yet the functional roles of ZNF671 in colorectal carcinoma (CRC) remain unresolved. This project examined the possible link between ZNF671 and CRC. Lower levels of ZNF671 were observed in CRC tissue compared with noncancerous tissue, which were related to a worse survival rate in CRC patients. High methylation levels at the ZNF671 gene promoter region were shown in CRC tissue, which were inversely correlated with ZNF671 expression. Treatment with demethylation agents restored ZNF671 levels in CRC cell lines. Up-regulation of ZNF671 resulted in suppressive effects on the proliferative ability and metastatic potency of CRC cells. Moreover, the up-regulation of ZNF671 reinforced the chemosensitivity of CRC cells. A mechanism study determined ZNF671 to be a vital mediator of Notch signaling. The up-regulation of ZNF671 decreased the expression of Notch1 and lowered the levels of NICD, HES1, and HEY1. The overexpression of NICD1 diminished ZNF671-mediated antitumor effects. ZNF671 depletion reinforced Notch signaling, and Notch suppression reversed ZNF671-depletion-elicited protumor effects. Moreover, the overexpression of ZNF671 weakened the tumorigenicity of CRC cells in a xenograft model in vivo. In summary, ZNF671 exerts a cancer-inhibiting function in CRC via the deactivation of Notch signaling. Low ZNF671 levels caused by gene promoter hypermethylation contribute to the malignant transformation of CRC. This work underlines the interest of ZNF671 as a target candidate for exploiting novel anti-CRC therapies.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Transdução de Sinais , Dedos de Zinco , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/metabolismo
14.
Am J Hematol ; 98(4): 598-607, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36594188

RESUMO

Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm mainly affecting young children. This study aimed to evaluate the outcomes of 449 pediatric patients enrolled in the BCH-LCH 2014 study. 52.6% of patients were classified with single-system (SS) LCH, 28.1% with multisystem (MS) risk organ negative (RO-) LCH, and 19.4% with MS RO+ LCH. Three hundred ninety-six patients (88.2%) were initially treated with first-line therapy based on the vindesine-prednisone combination. One hundred thirty-nine patients who lacked a response to initial treatment were shifted to second-line therapy, 72 to intensive treatment Arm S1 (a combination of cytarabine, cladribine, vindesine, and dexamethasone), and 67 to Arm S2 (without cladribine). The 5-year overall survival (OS), progression-free survival (PFS), and relapse rates were 98.2% (median: 97.6 months), 54.6% (median: 58.3 months), and 29.9%, respectively. MS RO+ patients had the worst prognosis among the three clinical subtypes. For the patients initially treated with first-line therapy, the 5-year OS, PFS, and relapse rates were 99.2%, 54.5%, and 29.3%, respectively. Patients in Arm S1 had a significantly better prognosis than patients in Arm S2 (5-year PFS: 69.2% vs. 46.5%, p = .042; relapse rate: 23.4% vs. 44.2%, p = .031). Multivariate analysis revealed that early treatment response, the involvement of RO, skin, and oral mucosa, as well as laboratory parameters, including CRP and γ-GT, were independent risk factors for the PFS of LCH. Thus, the prognosis of LCH in children has been improved significantly with stratified chemotherapy, and progression and relapse remained the challenges, especially for RO+ patients.


Assuntos
Cladribina , Histiocitose de Células de Langerhans , Criança , Humanos , Pré-Escolar , Prognóstico , Resultado do Tratamento , Cladribina/uso terapêutico , Vindesina/uso terapêutico , Fatores de Risco , Histiocitose de Células de Langerhans/terapia , Recidiva , Estudos Retrospectivos
15.
J Org Chem ; 88(20): 14803-14808, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37792295

RESUMO

Herein, we present a novel and ecofriendly biocatalytic approach for synthesizing efinaconazole (7), a clinically used antifungal agent. This method involves utilizing benzaldehyde lyase (BAL) to catalyze the crucial benzoin condensation step in the ketone precursor. Treating 2,4-difluorobenzaldehyde with BAL in the presence of thiamin-diphosphate (ThDP) and Mg2+ resulted in the formation of α-hydroxy ketone which then underwent the preparation of 7. This innovative approach not only provides a greener alternative but also offers significant advantages over the traditional chemical process. Through our efforts and development work, we have established efficient and scalable procedures that enable the production of 7 in a moderate 38% yield.


Assuntos
Tiamina Pirofosfato , Triazóis , Benzoína , Cetonas
16.
J Org Chem ; 88(6): 3802-3807, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36822154

RESUMO

The organocatalytic asymmetric Morita-Baylis-Hillman (MBH) reaction of isatin derivatives with various vinyl sulfones is disclosed. Chiral sulfone-containing 3-hydroxyoxindoles were produced in good to high yields and with good to high ee's. This report displays an unprecedented example to apply activated alkenes with sulfone moiety other than carbonyl groups in asymmetric MBH reactions and provides an efficient strategy to incorporate the sulfone functional group for the synthesis of chiral 3-hydroxyoxindoles.

17.
Bioorg Chem ; 140: 106783, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595396

RESUMO

Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 µM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 µM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.


Assuntos
HIV-1 , Voo Espacial , Relação Estrutura-Atividade , Inibidores da Transcriptase Reversa/farmacologia , Solventes
18.
Bioorg Chem ; 140: 106821, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659148

RESUMO

To enhance the anti-HIV-1 efficacy and solubility of our previously documented NNRTI 1, a collection of innovative quinoline-substituted DAPY derivatives were devised using heteroaromatic replacement strategy. The results of biological evaluation revealed that the representative compound 5h possessed the highest inhibitory activity against wild-type HIV-1 and selectivity index (EC50 = 0.0018 µM, SI > 166667), which were obviously better than that of 1 (EC50 = 0.00978 µM, SI > 37764), NVP (EC50 = 0.059 µM, SI > 158), EFV (EC50 = 0.028 µM, SI > 269), and ETR (EC50 = 0.0029 µM, SI > 1519). The water solubility of compound 5h was remarkably improved, surpassing that of 1, ETR and RPV. Additionally, this compound exerted significantly enhanced anti-resistance potency, compared to 1, and displayed comparable activity to ETR against WT RT of HIV-1 (IC50 = 0.011 µM). To elucidate the underlying molecular mechanisms, molecular docking studies were conducted to investigate the crucial interactions between 5h and WT/mutant strains of HIV-1. These findings provide valuable insights and drive further advancements in the development of DAPYs for HIV therapy.


Assuntos
HIV-1 , Hidroxiquinolinas , Quinolinas , Solubilidade , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Naftalenos , Água
19.
Bioorg Chem ; 133: 106413, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791619

RESUMO

1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPTs) have been previously described as an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). In our continuously pursuing HEPT optimization efforts, a series of novel HEPTs, featuring -C(OH)CH2R, -CC, or -CHCH2R linker at the benzylic α-methylene unit, were developed as NNRTIs. Among these new HEPTs, the compound C20 with -CHCH3 group at the benzylic α-methylene unit conferred the highest potency toward WT HIV-1 and selectivity (EC50 = 0.23 µM, SI = 150.20), which was better than the lead compound HEPT (EC50 = 7 µM, SI = 106). Also, C20 was endowed with high efficacy against clinically relevant mutant strains (EC50(L100I) = 1.07 µM; EC50(K103N) = 4.33 µM; EC50(Y181C) = 5.57 µM; EC50(E138K) = 1.06 µM; EC50(F227L+V106A) = 5.45 µM) and wild-type HIV-1 reverse transcriptase (RT) with an IC50 value of 0.55 µM. Molecular docking and molecular dynamics simulations, as well as preliminary structure-activity relationship (SAR) analysis of these new compounds, provided a deeper insight into the key structural features of the interactions between HEPT analogs and HIV-1 RT and laid the foundation for further modification on HEPT scaffold.


Assuntos
Fármacos Anti-HIV , Inibidores da Transcriptase Reversa , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Transcriptase Reversa do HIV , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Timina
20.
Bioorg Chem ; 136: 106549, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119785

RESUMO

Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , Inibidores da Protease de HIV , HIV-1 , Quinolinas , Humanos , Saquinavir/uso terapêutico , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Isoquinolinas/farmacologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA