Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836332

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Assuntos
Camundongos Endogâmicos C57BL , NF-kappa B , Nanotubos de Carbono , Triterpenos Pentacíclicos , Pneumonia , Transdução de Sinais , Triterpenos , Animais , Triterpenos Pentacíclicos/farmacologia , Nanotubos de Carbono/toxicidade , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Pneumonia/metabolismo , NF-kappa B/metabolismo , Masculino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química
2.
Ecotoxicol Environ Saf ; 252: 114623, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774793

RESUMO

Multi-walled carbon nanotubes (MWCNTs) mainly induce oxidative stress through the overproduction of reactive oxygen species (ROS), which can lead to cytotoxicity. Celastrol, a plant-derived compound, can exert antioxidant effects by reducing ROS production. Our results indicated that exposure to MWCNTs decreased cell viability and increased ROS production. Nrf2 knockdown (kd) led to increased ROS production and enhanced MWCNT-induced cytotoxicity. Keap1-kd led to decreased ROS production and attenuated cytotoxicity. Treatment with celastrol significantly decreased ROS production and promoted Keap1 protein degradation through the lysosomal pathway, thereby enhancing the translocation of Nrf2 from the cytoplasm to the nucleus and increasing HO-1 expression. The in vivo results showed that celastrol could alleviate the inflammatory damage of lung tissues, increase the levels of the antioxidants, GSH and SOD, as well as promote the expression of the antioxidant protein, HO-1 in MWCNT-treated mice. Celastrol can alleviate MWCNT-induced oxidative stress through the Keap1/Nrf2/HO-1 signaling pathway.


Assuntos
Nanotubos de Carbono , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Nanotubos de Carbono/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Transdução de Sinais
3.
Acta Pharmacol Sin ; 43(10): 2585-2595, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35217818

RESUMO

Abdominal aortic aneurysm (AAA) is defined as a dilated aorta in diameter at least 1.5 times of a normal aorta. Our previous studies found that activating α7 nicotinic acetylcholine receptor (α7nAChR) had a protective effect on vascular injury. This work was to investigate whether activating α7nAChR could influence AAA formation and explore its mechanisms. AAA models were established by angiotensin II (Ang II) infusion in ApoE-/- mice or in wild type and α7nAChR-/- mice. In vitro mouse aortic smooth muscle (MOVAS) cells were treated with tumor necrosis factor-α (TNF-α). PNU-282987 was chosen to activate α7nAChR. We found that cell pyroptosis effector GSDMD and NLRP3 inflammasome were activated in abdominal aorta, and inflammatory cytokines in serum were elevated in AAA models of ApoE-/- mice. Activating α7nAChR reduced maximal aortic diameters, preserved elastin integrity and decreased inflammatory responses in ApoE-/- mice with Ang II infusion. While α7nAChR-/- mice led to aggravated aortic injury and increased inflammatory cytokines with Ang II infusion when compared with wild type. Moreover, activating α7nAChR inhibited NLRP3/caspase-1/GSDMD pathway in AAA model of ApoE-/- mice, while α7nAChR deficiency promoted this pathway. In vitro, N-acetylcysteine (NAC) inhibited NLRP3 inflammasome activation and NLRP3 knockdown reduced GSDMD expression, in MOVAS cells treated with TNF-α. Furthermore, activating α7nAChR inhibited oxidative stress, reduced NLRP3/GSDMD expression, and decreased cell pyroptosis in MOVAS cells with TNF-α. In conclusion, our study found that activating α7nAChR retarded AAA through inhibiting pyroptosis mediated by NLRP3 inflammasome. These suggested that α7nAChR would be a potential pharmacological target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Inflamassomos , Acetilcisteína , Angiotensina II/metabolismo , Animais , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Elastina , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
4.
J Vasc Res ; : 1-5, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33556943

RESUMO

This study tested the hypothesis that endothelium-specific GTP cyclohydrolase I (GTPCH I) overexpression (Tg-GCH) restores age-associated endothelial dysfunction in vivo. Aortic GTPCH I expression and serum nitric oxide (NO) release were measured in young and aged mice. Aortic rings from young and aged wild-type (WT) mice and aged Tg-GCH mice were suspended for isometric tension recording. A hind limb ischemia model was used to measure blood flow recovery. Aged mice showed reduced GTPCH I expression in the aorta and decreased NO levels in serum. Compared with aged WT mice, Tg-GCH significantly elevated NO levels in serum in aged Tg-GCH mice, restored the impaired aortic relaxation in response to acetylcholine, and significantly elevated aortic constriction in response to L-NAME. Importantly, aged Tg-GCH mice displayed a significant increase in blood flow recovery compared with aged WT mice. GTPCH I reduction contributes to aging-associated endothelial dysfunction, which can be retarded by Tg-GCH.

5.
J Neuroinflammation ; 13(1): 71, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048470

RESUMO

BACKGROUND: The NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1ß and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue. METHODS: We established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated. RESULTS: Mice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1ß and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1ß production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1ß levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1ß levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were not significantly altered. CONCLUSIONS: These findings suggest that LPS-induced fatigue is an IL-1ß-dependent process and that the NLRP3/caspase-1 pathway is involved in the mechanisms of LPS-induced fatigue behaviours. NLRP3/caspase-1 inhibition may be a promising therapy for fatigue treatment.


Assuntos
Síndrome de Fadiga Crônica/fisiopatologia , Fadiga/induzido quimicamente , Fadiga/fisiopatologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Fadiga/psicologia , Síndrome de Fadiga Crônica/psicologia , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Psicológico/fisiopatologia , Natação/psicologia
6.
Anesthesiology ; 125(5): 1005-1016, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27560466

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (HIR) injury is a complication of liver surgery. As much as 50% of hepatocytes undergo apoptosis within the first 24 h of reperfusion. The neurotransmitters of the vagus nerve can activate α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. The function of Kupffer cells (KCs) determines HIR injury. We hypothesize that the vagus nerve could attenuate HIR-induced hepatocyte apoptosis by activating α7nAChR on KCs. METHODS: Hepatic vagotomized C57BL/6J mice, KC-eliminated C57BL/6J mice, and α7nAChR mice were used for HIR. Primary KCs and hepatocytes were subjected to hypoxia/reoxygenation (HR). Liver injury, hepatocyte apoptosis, reactive oxygen species (ROS) production, and soluble CD163 were measured. RESULTS: Hepatic vagotomy and α7nAChR caused higher levels of alanine transaminase and liver caspase-3 and -8 activity by HIR. Activating α7nAChR attenuated these changes in wild-type but not in the α7nAChR mice. Furthermore, activating α7nAChR diminished hepatic injury and reduced liver apoptosis by HIR in vagotomized mice. In vitro, activating α7nAChR reduced apoptosis of hepatocytes cocultured with KCs that suffered HR. Similar to the effects by catalase, activating α7nAChR on KCs reduced ROS and H2O2 by HR. The supernatant from KCs, with α7nAChR activated or catalase treated, prevented hepatocyte apoptosis by HR. Finally, KC elimination reduced HIR-induced H2O2 production in mice. Activating α7nAChR significantly attenuated soluble CD163 both in mice by HIR (serum: 240 ± 34 vs. 446 ± 72; mean ± SD; n = 8; P < 0.01) and in KCs by HR (supernatant: 4.23 ± 0.06 vs. 5.60 ± 0.18; n = 3; P < 0.01). CONCLUSIONS: The vagus nerve could minimize HIR-induced liver apoptosis through activating α7nAChR on KCs possibly by preventing their excessive ROS production.


Assuntos
Apoptose , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Traumatismo por Reperfusão/metabolismo , Nervo Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Modelos Animais de Doenças , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
7.
Neurobiol Learn Mem ; 114: 10-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24752150

RESUMO

Previous evidence suggests that a high-salt (HS) diet may increase oxidative stress and contribute to the development of hypertension that is already present. Oxidative stress is thought to play a critical role in the development of neurodegenerative diseases. Lower dietary sodium intake putatively contributes to a lower rate of cognitive impairment; however, the specific effects of HS diet on cognitive function remain poorly understood. In this work, C57BL/6J mice were administered a normal-salt (NS) diet (0.4% NaCl) or a HS diet (7.0% NaCl) for 12 weeks, and cognitive ability and oxidative stress in the brain were measured. It was found that the HS diet significantly impaired retention of spatial memory. Additionally, superoxide anion production in the hippocampus was significantly increased in the HS diet mice compared with that in the NS mice. Interestingly, the antioxidant defense capacities for HS diet mice were markedly reduced in the hippocampus, but not in the cerebral cortex, compared with the NS mice. Taken together, these data demonstrate that HS diet directly impairs retention of spatial memory, which may be related to the increased oxidative stress observed in the hippocampus.


Assuntos
Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio na Dieta/administração & dosagem , Memória Espacial/efeitos dos fármacos , Animais , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Memória Espacial/fisiologia , Superóxidos/metabolismo
8.
BMC Gastroenterol ; 14: 106, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916323

RESUMO

BACKGROUND: Prolonged stress leads over time to allostatic load on the body and is likely to exacerbate a disease process. Long-term of stress exposure is one of a risk factor for metabolism-related diseases such as obesity and type 2 diabetes. However, the relationship between chronic stress and non-alcoholic fatty liver disease (NAFLD) remain unknown. METHODS: To address the hypothesis that chronic stress associate to NAFLD development, we subjected C57bl/6 mice to electric foot shock and restraint stress for 12 weeks to set up chronic stress model. Then the serum and hepatic triglyceride (TG), total cholesterol (TC) were measured. Hepatic HE and Oil red O staining were used to specify the state of the NAFLD. To investigate whether inflammation takes part in the stress-induced NAFLD process, related visceral fat, serum and hepatic inflammatory factors were measured. RESULTS: We observed that chronic stress led to an overall increase of hepatic triglyceride and cholesterol while decreasing body weight and visceral fat mass. Microvesicular steatosis, lobular inflammation and ballooning degeneration were seen in stress liver section. This effect was correlated with elevated hepatic and serum inflammatory factors. Although the amount of visceral fat was decreased in stress group, various adipocytokines were elevated. CONCLUSIONS: We showed that chronic stress is associated to NAFLD and chronic inflammation in visceral fat, though food intake and visceral fat mass were decreased. These results may contribute to better understanding of the mechanism from steatosis to steatohepatitis, and propose a novel insight into the prevention and treatment of NAFLD.


Assuntos
Colesterol/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Psicológico/metabolismo , Triglicerídeos/metabolismo , Alostase , Animais , Peso Corporal , Modelos Animais de Doenças , Comportamento Alimentar , Feminino , Inflamação/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Restrição Física , Estresse Psicológico/complicações
9.
Histol Histopathol ; 39(7): 845-851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38189484

RESUMO

Heat shock proteins (HSPs) are a family of proteins involved in protein folding and maturation that are expressed by cells in response to stressors including heat shock. Recent studies have demonstrated that HSPs play major roles in carcinogenesis by regulating angiogenesis, cell proliferation, migration, invasion, metastasis, apoptosis, as well as therapy resistance to certain anticancer drugs. Despite being the largest and most diverse subgroup of the HSP family, HSP40 (DNAJ) is an understudied family of co-chaperones. HSP40 family members are also known to be involved in various types of cancers. In this article, we review the involvement of human HSP40 family members in various aspects of cancer biology. In addition, we highlight the possible potential of HSP40 as a tumor biomarker or drug target for improving the prognosis and treatment of cancer patients in the future.


Assuntos
Proteínas de Choque Térmico HSP40 , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas de Choque Térmico HSP40/metabolismo , Animais , Biomarcadores Tumorais/metabolismo
10.
Open Med (Wars) ; 19(1): 20240898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463518

RESUMO

Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.

11.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38551163

RESUMO

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Assuntos
Proteínas de Choque Térmico HSP40 , Golpe de Calor , Animais , Humanos , Camundongos , Golpe de Calor/genética , Golpe de Calor/metabolismo , Proteínas de Choque Térmico HSP40/genética , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout , Proteômica , Transdução de Sinais
12.
Cardiovasc Diabetol ; 12: 75, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659427

RESUMO

BACKGROUND: Cardiac dysfunction is well-described in endotoxemia and diagnosed in up to 60% of patients with endotoxic shock. ATP-sensitive potassium (KATP) channels are critical to cardiac function. This study investigates the role of Kir6.2 subunits of KATP channels on cardiac dysfunction in lipopolysaccharide (LPS)-induced endotoxemia. METHODS: Kir6.2 subunits knockout (Kir6.2-/-) and wild-type (WT) mice were injected with LPS to induce endotoxemia. Cardiac function was monitored by echocardiography. Left ventricles were taken for microscopy (both light and electron) and TUNEL examination. Serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities, and tumor necrosis factor-α (TNF-α) levels in both serum and left ventricular tissues were determined. RESULTS: Compared to WT, Kir6.2-/- mice showed significantly declined cardiac function 360 min after LPS administration, aggravated myocardial damage and elevated serum LDH and CK activities. Apoptotic cells were obviously increased in heart tissues from Kir6.2-/- mice at 90, 180 and 360 min. TNF-α expression in both serum and heart tissues of Kir6.2-/- mice was significantly increased. CONCLUSIONS: We conclude that Kir6.2 subunits are critical in resistance to endotoxemia-induced cardiac dysfunction through reducing myocardial damage by inhibition of apoptosis and inflammation. KATP channels blockers are extensively used in the treatment of diabetes, their potential role should therefore be considered in the clinic when patients treated with antidiabetic sulfonylureas are complicated by endotoxemia.


Assuntos
Endotoxemia/complicações , Ventrículos do Coração/diagnóstico por imagem , Miocárdio/patologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Disfunção Ventricular Esquerda/etiologia , Animais , Apoptose , Creatina Quinase/sangue , Modelos Animais de Doenças , Ecocardiografia , Endotoxemia/sangue , Ventrículos do Coração/patologia , Ventrículos do Coração/ultraestrutura , Canais KATP , L-Lactato Desidrogenase/sangue , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Miocárdio/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização/genética , Disfunção Ventricular Esquerda/sangue
13.
BMC Cardiovasc Disord ; 12: 38, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682236

RESUMO

BACKGROUND: Inflammation processes are important participants in the pathophysiology of hypertension and cardiovascular diseases. The role of the alpha7 nicotinic acetylcholine receptor (α7nAChR) in inflammation has recently been identified. Our previous study has demonstrated that the α7nAChR-mediated cholinergic anti-inflammatory pathway is impaired systemically in the genetic model of hypertension. In this work, we investigated the changes of α7nAChR expression in a model of secondary hypertension. METHODS: The 2-kidney 1-clip (2K1C) hypertensive rat model was used. Blood pressure, vagus nerve function, serum tumor necrosis factor-α (TNF-α) and both the mRNA and protein levels of α7nAChR in tissues from heart, kidney and aorta were measured at 4, 8 and 20 weeks after surgery. RESULTS: Compared with age-matched control, it was found that vagus nerve function was significantly decreased in 2K1C rats with the development of hypertension. Serum levels of TNF-α were greater in 2K1C rats than in age-matched control at 4, 8 and 20 weeks. α7nAChR mRNA in the heart was not altered in 2K1C rats. In the kidney of 2K1C rats, α7nAChR expression was significantly decreased at 8 and 20 weeks, but markedly increased at 4 weeks. α7nAChR mRNA was less in aorta of 2K1C rats than in age-matched control at 4, 8 and 20 weeks. These findings were confirmed at the protein levels of α7nAChR. CONCLUSIONS: Our results suggested that secondary hypertension may induce α7nAChR downregulation, and the decreased expression of α7nAChR may contribute to inflammation in 2K1C hypertension.


Assuntos
Hipertensão/metabolismo , Receptores Nicotínicos/genética , Animais , Pressão Sanguínea , Regulação para Baixo , Frequência Cardíaca , Hipertensão/genética , Inflamação/complicações , Rim/metabolismo , Masculino , Miocárdio/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7
14.
Nanotoxicology ; 16(5): 597-609, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36151876

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are currently widely used and are expected to be used as drug carriers and contrast agents in clinical practice. Previous studies mainly focused on their lung toxicity; therefore, their effects on the vascular endothelium are unclear. In this study, a human angiogenesis array was used to determine the effect of MWCNTs on the expression profile of angiogenic factors in endothelial cells and to clarify the role of vascular endothelial growth factor (VEGF) in MWCNT-induced endothelial cell injury at the cellular and animal levels. The results indicated that MWCNTs (20-30 nm and 30-50 nm) could enter endothelial cells and disrupt human umbilical vein endothelial cell (HUVECs) activity in a concentration-dependent manner. MWCNTs disrupted the tube formation ability and cell migration function of HUVECs. The results from a Matrigel Plug experiment in mice showed that angiogenesis in the MWCNT experimental group was significantly reduced. The results of a protein chip analysis indicated that VEGF expression in the MWCNT treatment group was decreased, a finding that was validated by ELISA results. The protein expression levels of AKT and eNOS in the MWCNT treatment group were significantly decreased; the administration of recombinant VEGF significantly alleviated the migration ability and tube formation ability of endothelial cells injured by MWCNTs, upregulated the protein expression of AKT and eNOS, and increased the number of neovascularization in mice in the MWCNT treatment group. This study demonstrated that MWCNTs affect angiogenesis via the VEGF-Akt-eNOS axis which can be rescued by VEGF endothelial treatment.


Assuntos
Nanotubos de Carbono , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Proteínas Proto-Oncogênicas c-akt , Células Endoteliais da Veia Umbilical Humana , Movimento Celular
15.
Food Chem X ; 12: 100162, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34825171

RESUMO

Angelica dahurica is a famous functional food and herb. To guarantee quality of A. dahurica, a strategy "Q-markers targeted screening" was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1). After extraction, the fingerprints of A. dahuricae samples were established. For the preliminary herb authenticity, the targeted screening of 23 quantitative markers were performed by similarity analysis and hierarchical cluster analysis based on the fingerprints, which were identified by liquid chromatography tandem mass spectrometry (LC-MS). Subsequently, for further quality control, the targeted screening of nine quantitative markers were done by similarity analysis & linear discriminant analysis, which were determined by LC. Lastly, the strategy was successfully applied to quality assessment of A. dahurica samples.

16.
Front Pharmacol ; 12: 765790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733164

RESUMO

Psoriasis is characterized by keratinocyte proliferation and immune cell infiltration. M2 isoform of pyruvate kinase (PKM2) was reported to have an important role in cell proliferation, which is a rate-limiting enzyme that regulates the final step of glycolysis. However, how PKM2 regulates cell metabolism and proliferation in psoriatic keratinocytes is still poorly understood. Interestingly, we found that PKM2 was highly expressed in psoriatic epidermis from patients and mouse models. PKM2 overexpression promoted keratinocyte glycolytic metabolism while knockdown inhibited keratinocyte proliferation and glycolysis. Mice lacking PKM2 specifically in keratinocytes, pharmacological inhibition of PKM2 or glycolysis inhibited keratinocyte proliferation and showed obvious remission in an imiquimod-induced psoriatic mouse model. Moreover, the inhibitor of the EGF-receptor blocked EGF-stimulated PKM2 expression and glycolysis in keratinocytes. We identify PKM2 as an upregulated gene in psoriasis. PKM2 is essential in keratinocyte over-proliferation and may represent a therapeutic target for psoriasis.

17.
PeerJ ; 8: e9306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704438

RESUMO

Added risk portended by diabetes in addition to hypertension has been related to an amplification of endothelial dysfunction. ß-blockers are widely used for cardiovascular diseases and improve the endothelial function compared with a placebo. However, the effect of ß-blockers on the endothelial progenitor cells (EPCs) function in diabetes is still unknown. Five ß-blockers (metoprolol, atenolol, propranolol, bisoprolol, and nebivolol) were tested in EPC functional screening. Metoprolol improved EPC function significantly among the five ß-blockers and was chosen for the in vivo tests in STZ induced diabetic mice. Reactive hyperemia peripheral arterial tonometry (RH-PAT) measurements were performed using the Endo-PAT2000 device in diabetic patients. Metoprolol, but not other ß-blockers, improved EPC function in both tube formation and migration assay. EPC function was significantly decreased in diabetic mice, and metoprolol treatment restored damaged EPC migration capabilities and circulation EPC number. Metoprolol treatment promoted wound healing and stimulated angiogenesis in diabetic mice. Furthermore, metoprolol significantly enhanced eNOS phosphorylation and decreased O2 - levels in EPCs of diabetic mice. In clinical trials, the RH-PAT index was significantly higher in metoprolol-treated versus bisoprolol-treated diabetics. Metoprolol could accelerate wound healing in diabetic mice and improve endothelial function in diabetic subjects, which may be mediated in part by improving impaired EPC function.

18.
PeerJ ; 7: e7668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579588

RESUMO

Forkhead box O1 (FoxO1) is involved in lipid metabolisms. However, its role in chronic stress-related nonalcoholic fatty liver disease (NAFLD) is unclear. The scientific premise of our study was based on the finding that FoxO1 expression is increased in the liver of mice after chronic stress. It is important to understand the mechanisms involved in the activation of FoxO1 and how its function affects the liver lipid deposition. We employed a murine chronic stress model, in which mice were treated by plantar electrical stimulation and restraint for 6 weeks, and a cellular model, in which Hepa1-6 cells were treated with corticosterone. We also used a pharmacologic approach as1842856, a highly specific FoxO1 inhibitor. Lipid metabolism related genes levels were measured by qRT-PCR and the lipid levels by biochemical detection. We show that the level of FoxO1 is significantly elevated in the liver of chronic stress mice. Transcription factor FoxO1 regulates a lipid synthesis phenotype of hepatocyte that is involved in the development and progression of NAFLD. We have shown that inhibition of FoxO1 induced phenotypic conversion of hepatocytes and down-regulates lipid synthesis genes expression by hepatocytes, which contribute to lipid deposition in NAFLD. At the cellular level, the inhibitor of FoxO1 as1842856 can also attenuate the lipid deposition of Hepa1-6 cells induced by corticosterone. Targeting FoxO1 is a novel therapeutic target for chronic stress-related NAFLD.

19.
Front Pharmacol ; 9: 968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186184

RESUMO

Backgrounds and Aims: Na+ is an important nutrient and its intake, mainly from salt (NaCl), is essential for normal physiological function. However, high salt intake may lead to vascular injury, independent of a rise in blood pressure (BP). Canonical NALP3 inflammasome activation is a caspase-1 medicated process, resulting in the secretion of IL-18 and IL-1ß which lead to endothelial dysfunction. However, some researches uncovered a direct and inflammasome-independent role of NALP3 in renal injury. Thus, this study was designed to investigate the possible mechanisms of NALP3 in high salt induced endothelial dysfunction. Methods and Results: Changes in endothelial function were measured by investigating mice (C57BL/6J, NALP3-/- and wild-type, WT) fed with normal salt diet (NSD) or high salt diet (HSD) for 12W, and thoracic aortic rings from C57BL/6J mice cultured in high-salt medium. Changes of tube formation ability, intracellular reactive oxygen species (ROS), and NALP3 inflammasome expression were detected using mouse aortic endothelial cells (MAECs) cultured in high-salt medium. Consumption of HSD for 12W did not affect BP or body weight in C57BL/6J mice. Endothelium-dependent relaxation (EDR) decreased significantly in C57BL/6J mice fed with HSD for 12W, and in isolated thoracic aortic rings cultured in high-salt medium for 24 h. Results from the aortic ring assay also revealed that the angiogenic function of thoracic aortas was impaired by either consumption of HSD or exposure to high-salt medium. NALP3-/- mice fed with HSD showed a relatively mild decrease in EDR function when compared with WT mice. Tube length of thoracic aortic rings from NALP3-/- mice was longer than those from WT mice after receiving high-salt treatment. Inhibiting NALP3 with a NALP3 antagonist, small interfering (si) RNA experiments using si-NALP3, and decomposing ROS significantly improved tube formation ability in MAECs under high salt medium. NALP3 expression was increased in MAECs cultured with high salt treatment and inhibiting NALP3 reversed the down-regulation of p-eNOS induced by high salt in MAECs. Conclusion: High salt intake impairs endothelial function, which is at least in part mediated by increasing NALP3 expression.

20.
Cell Death Dis ; 8(2): e2579, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151471

RESUMO

A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1ß as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation.


Assuntos
Medula Óssea/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA