Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 294-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940729

RESUMO

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Assuntos
Alquilação , Aminas , Catálise , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligantes , Preparações Farmacêuticas/química
2.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

3.
Bioorg Med Chem Lett ; 104: 129708, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521176

RESUMO

Guaianolide dimers represent a unique class of natural products with anticancer activities, but their low content in plants has limited in-depth pharmacological studies. Lavandiolide I is a guaianolide dimer isolated from Artemisia species, and had been synthesized on a ten-gram scale in four steps with 60 % overall yield, which showed potent antihepatoma activity on the HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values of 12.1, 18.4, and 17.6 µM, respectively. To explore more active dimers, 33 lavandiolide I derivatives were designed, synthesized, and evaluated for their inhibitory activity on human hepatoma cell lines. Among them, 10 derivatives were more active than lavandiolide I and sorafenib on the three cell lines. The primary structure-activity relationship concluded that the introduction of aldehyde, ester, azide, amide, carbamate and urea functional groups at C-14' of the guaianolide dimer significantly enhanced the antihepatoma activity. Among these compounds, derivatives 25, 27, and 33 enhanced antihepatoma activity more than 1.2-5.8 folds than that of lavandiolide I, and demonstrated low toxicity to the human liver cell lines (THLE-2) and good safety profiles with selective index ranging from 1.3 to 3.4, while lavandiolide I was more toxic to THLE-2 cells. This work provides new insights into enhancing the antihepatoma efficacy and reducing the toxicity of sesquiterpenoid dimers.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sesquiterpenos de Guaiano , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Sesquiterpenos de Guaiano/síntese química , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacologia
4.
J Am Chem Soc ; 145(27): 14686-14696, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392183

RESUMO

The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.

5.
Org Biomol Chem ; 21(26): 5451-5456, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37337774

RESUMO

Artemisia annua, also known as "Qinghao" in Chinese, is a famous traditional Chinese medicine and has been used for the treatment of malaria and various tumors. In this study, three novel sesquiterpenoid-flavonol hybrids, artemannuols A-C (1-3), were isolated and elucidated by extensive spectral data and ECD calculations. Structurally, artemannuols A-C (1-3) are the first examples of sesquiterpenoid-flavonol hybrids fused by an ether bond, among which artemannuols A and B (1 and 2) are composed of bisabolane-type sesquiterpenoid and flavonol moieties, and artemannuol C (3) is composed of humulane-type sesquiterpenoid and flavonol moieties. The antihepatoma assay suggested that compounds 1-3 showed inhibitory effects against HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values in the range of 32.7 to 70.4 µM.


Assuntos
Artemisia annua , Sesquiterpenos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Linhagem Celular
6.
Org Biomol Chem ; 21(4): 823-831, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36601986

RESUMO

Artemongolides A-E (1-5), an unusual class of diseco-guaianolides featuring a rare fused 7-methylbicyclo[2.2.1]-2-ene-7-heptanol ring system, and artemongolide F (6), the first example of [4 + 2] Diels-Alder type adducts presumably incorporating a chain farnesane sesquiterpene and a guaianolide diene, were isolated from the whole plant of Artemisia mongolica. Their structures were elucidated based on the spectroscopic analyses of UV, IR, MS, and 1D and 2D NMR spectra. The absolute configurations of artemongolides A (1) and F (6) were determined by single-crystal X-ray crystallography, and those of artemongolides B-E (2-5) were established by ECD calculations. Cytotoxicity evaluation suggested that compound 1 exhibited activity against HSC-LX2 cells with an IC50 value of 165.0 µM, equivalent to that of the positive control silybin (IC50, 146.4 µM). Preliminary mechanism studies revealed that compound 1 could inhibit the deposition of human collagen type I (Col I), human hyaluronic acid (HA), and human laminin (HL) with IC50 values of 123.8, 160.4, and 139.20 µM.


Assuntos
Artemisia , Sesquiterpenos , Humanos , Artemisia/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
7.
Bioorg Chem ; 137: 106617, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267793

RESUMO

Artemyrianolide H (AH) is a germacrene-type sesquiterpenolid isolated from Artemisia myriantha, and showed potent cytotoxicity against three human hepatocellular carcinoma cell lines HepG2, Huh7, and SK-Hep-1 with IC50 values of 10.9, 7.2, and 11.9 µM, respectively. To reveal structure-activity relationship, 51 artemyrianolide H derivatives including 19 dimeric analogs were designed, synthesized, and assayed for their cytotoxicity against three human hepatoma cell lines. Among them, 34 compounds were more active than artemyrianolide H and sorafenib on the three cell lines. Especially, compound 25 exhibited the most promising activity with IC50 values of 0.7 (HepG2), 0.6 (Huh7), and 1.3 µM (SK-Hep-1), which were 15.5, 12.0, and 9.2-fold higher than that of AH and 16.4, 16.3 and 17.5-fold higher than that of sorafenib. Cytotoxicity evaluation on normal human liver cell lines (THLE-2) demonstrated good safety profile of compound 25 with SI of 1.9 (HepG2), 2.2 (Huh 7) and 1.0 (SK-Hep1). Further studies revealed that compound 25 dose-dependently arrested cells at G2/M phase which was correlated with the up-regulation of both cyclin B1 and p-CDK1, and induced apoptosis through the activation of mitochondrial pathways in HepG2 cells. In addition, the migratory and invasive abilities in HepG2 cells after treatment with 1.5 µM of compound 25 were decreased by 89% and 86% with the increase of E-cadherin expression accompanied by the decrease of N-cadherin, vimentin expression. Bioinformatics analysis based on machine learning predicted that PDGFRA and MAP2K2 might be acting targets of compound 25, and SPR assays demonstrated compound 25 were bound with PDGFRA and MAP2K2 with KD value of 0.168 nM, and 8.49 µM, respectively. This investigation proposed that compound 25 might be considered as a promising lead compound for the development of antihepatoma candidate.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Relação Estrutura-Atividade , Células Hep G2 , Proliferação de Células , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
8.
Drug Dev Res ; 84(6): 1285-1298, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345274

RESUMO

Inspired by our previous finding that disesquiterpenoids showed more potent antihepatoma cytotoxicity than their corresponding parent monomers, natural product-like guaianolide-germacranolide heterodimers were designed and synthesized from guaianolide diene and germacranolides via a biomimetic Diels-Alder reaction to provide three antihepatoma active dimers with novel scaffolds. To explore the structure-activity relationship, 31 derivatives containing ester, carbamate, ether, urea, amide, and triazole functional groups at C-14' were synthesized and evaluated for their cytotoxic activities against HepG2, Huh7, and SK-Hep-1 cell lines. Among them, 25 compounds were more potent than sorafenib against HepG2 cells, 15 compounds were stronger than sorafenib against Huh7 cells, and 17 compounds were stronger than sorafenib against SK-Hep-1 cells. Compound 23 showed the most potent cytotoxicity against three hepatoma cell lines with IC50 values of 4.4 µM (HepG2), 3.7 µM (Huh7), and 3.1 µM (SK-Hep-1), which were 2.7-, 2.2-, and 2.8-fold more potent than sorafenib, respectively. The underlying mechanism study demonstrated that compound 23 could induce cell apoptosis, prevent cell migration and invasion, cause G2/M phase arrest in SK-Hep-1 cells. Network pharmacology analyses predicted PDGFRA was one of the potential targets of compound 23, and surface plasmon resonance (SPR) assay verified that 23 had strong affinity with PDGFRA with a dissociatin constant (KD) value of 90.2 nM. These promising findings revealed that structurally novel guaianolide-germacranolide heterodimers might provide a new inspiration for the discovery of antihepatoma agents.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Células Hep G2 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Apoptose
9.
Angew Chem Int Ed Engl ; 62(2): e202214709, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357331

RESUMO

The copper-catalyzed enantioconvergent radical C(sp3 )-C(sp2 ) cross-coupling of tertiary α-bromo-ß-lactams with organoboronate esters could provide the synthetically valuable α-quaternary ß-lactams. The challenge arises mainly from the construction of sterically congested quaternary stereocenters between the tertiary alkyl radicals and chiral copper(II) species. Herein, we describe our success in achieving such transformations through the utilization of a copper/hemilabile N,N,N-ligand catalyst to forge the sterically congested chiral C(sp3 )-C(sp2 ) bond via a single-electron reduction/transmetalation/bond formation catalytic cycle. The synthetic potential of this approach is shown in the straightforward conversion of the corresponding products into many valuable building blocks. We hope that the developed catalytic cycle would open up new vistas for more enantioconvergent cross-coupling reactions.


Assuntos
Ésteres , beta-Lactamas , Cobre/química , Catálise , Elétrons
10.
J Am Chem Soc ; 144(14): 6442-6452, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363483

RESUMO

The enantioconvergent radical C(sp3)-C(sp2) cross-coupling of alkyl halides with alkenylboronate esters is an appealing tool in the assembly of synthetically valuable enantioenriched alkenes owing to the ready availability, low toxicity, and air/moisture stability of alkenylboronate esters. Here, we report a copper/chiral N,N,N-ligand catalytic system for the enantioconvergent cross-coupling of benzyl/propargyl halides with alkenylboronate esters (>80 examples) with good functional group tolerance. The key to the success is the rational design of hemilabile N,N,N-ligands by mounting steric hindrance at the ortho position of one coordinating quinoline ring. Thus, the newly designed ligand could not only promote the radical cross-coupling process in the tridentate form but also deliver enantiocontrol over highly reactive alkyl radicals in the bidentate form. Facile follow-up transformations highlight its potential utility in the synthesis of various enantioenriched building blocks as well as in the late-stage functionalization for drug discovery.


Assuntos
Cobre , Ésteres , Alcenos , Catálise , Ligantes
11.
Bioorg Chem ; 128: 106056, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908354

RESUMO

In the search for new antihepatic fibrosis candidates, it was observed that the EtOH extract of Artemisia zhongdianensis and EtOAc fraction had cytotoxicity against hepatic stellate cell line LX2 (HSC-LX2) with the inhibitory ratios of 85.7 % and 83.9 % at 400 µg/mL. 21 new guaianolide dimers, artemzhongdianolides A1 - A21 (1-21) were isolated from the active fractions under the guidance of bioassay, and elucidated by spectral analyses (HRESIMS, 1D and 2D NMR, IR, ECD). The absolute stereochemistry of compounds 1, 13, and 14 was determined by single-crystal X-ray diffraction analyses. Cytotoxicity evaluation suggested that nine compounds exhibited activity against HSC-LX2 with IC50 values ranging from 14.0 to 95.2 µM. Of them, compounds 2, 6, and 13 displayed significant cytotoxicity against HSC-LX2 with IC50 values of 22.1, 24.3 and 14.0 µM, which were 6 to 10 times more active than the positive drug silybin (IC50, 148.6 µM). Preliminary mechanism study revealed that compounds 2, 6, and 13 could markedly inhibited the deposition of human collagen type Ⅰ (Col Ⅰ), human hyaluronic acid (HA), and human laminin (HL) with IC50 values of 37.9, 54.8, and 28.0 µM (Col Ⅰ), 29.5, 25.3, and 42.9 µM (HL), 31.2, 94.6, and 12.4 µM (HA), which were 1.5 to 13-fold more potent than silybin.


Assuntos
Artemisia , Sesquiterpenos , Artemisia/química , Fibrose , Humanos , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano , Silibina
12.
Bioorg Chem ; 120: 105653, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149263

RESUMO

Ten new diarylheptanoid dimers, katsumadainols C1 - C10 (1-10), were isolated from the seeds of Alpinia katsumada and elucidated by extensive spectroscopic methods, ECD calculations, and single-crystal X-ray diffraction. Their antidiabetic effects were evaluated by the stimulation of GLP-1 secretion in STC-1 cells and inhibition against four diabetes-related enzymes, GPa, α-glucosidase, PTP1B, and DPP4. Compounds 1-5 and 7-10 significantly stimulated GLP-1 secretion by 267.5-433.1% (25.0 µM) and 117.8-348.2% (12.5 µM). Compounds 1-4 exhibited significant inhibition on GPa with IC50 values of 18.0-31.3 µM; compounds 1-5 showed obvious inhibition on α-glucosidase with IC50 values of 6.9-18.2 µM; compounds 1-5 and 10 possessed PTP1B inhibitory activity with IC50 values ranging from 35.5 to 80.1 µM. This investigation first disclosed compounds 1-4 as intriguing GLP-1 secretagogues and GPa, α-glucosidase, and PTP1B inhibitors, which provided valuable clues for searching multiple-target antidiabetic candidates from Zingiberaceae plants.


Assuntos
Alpinia , Alpinia/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Inibidores Enzimáticos/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Secretagogos , alfa-Glucosidases
13.
Med Chem Res ; 31(7): 1224-1239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634434

RESUMO

Our previous study demonstrated that guaiane-type sesquiterpenoid ludartin showed potent antihepatoma activity against two human hepatocellular carcinoma cell lines, HepG2 and Huh7, with IC50 values of 32.7 and 34.3 µM, respectively. In this study, 34 ludartin derivatives were designed, synthesized and evaluated for their cytotoxic activities against HepG2 and Huh7 cell lines using an MTT assay in vitro. As a result, 17 compounds increased the activity against HepG2 cells, and 20 compounds enhanced the activity against Huh7 cells; 14 derivatives 2, 4-7, 9, 11, 17, 24, 28-30 and 32-33 were superior to ludartin on both HepG2 and Huh7 cells. In particular, dimeric derivative 33 as the most active compound showed 20-fold and 17-fold enhancement of cytotoxicity against HepG2 and Huh7 cells compared to that of ludartin. These results suggested that compound 33 could serve as a promising lead compound against liver cancer. Graphical abstract.

14.
Med Chem Res ; 31(2): 350-367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035203

RESUMO

The dammarane triterpenoid (20S,24R)-epoxy-dammarane-3ß,12ß,25-triol obtained from Cyclocarya paliurus in our previous study showed inhibitory activity on α-glucosidase in vitro with an inhibitory ratio of 32.2% at the concentration of 200 µM. In order to reveal the structure-activity relationships (SARs) and get more active compounds, 42 derivatives of (20S,24R)-epoxy-dammarane-3ß,12ß,25-triol were synthesized by chemical modification on the hydroxyls (C-3 and C-12), rings A and E, and assayed for their α-glucosidase and PTP1B inhibitory activities. Two compounds (8, 26) increased activity against α-glucosidase, and four compounds (8, 15, 26, 42) significantly inhibited PTP1B. It was noted that compounds 8 and 26 could inhibit both α-glucosidase and PTP1B as dual-target inhibitors with IC50 values of 489.8, 467.7 µM (α-glucosidase) and 319.7, 269.1 µM (PTP1B). Compound 26 was revealed to be a mix-type inhibitor on α-glucosidase and a noncompetitive-type inhibitor on PTP1B based on enzyme kinetic study. Furthermore, compound 42 could selectively inhibited PTP1B as a mix-type inhibitor with IC50 value of 134.9 µM, which was 2.5-fold higher than the positive control, suramin sodium (IC50 339.0 µM), but not inhibit α-glucosidase.

15.
Med Chem Res ; 31(11): 2045-2057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159033

RESUMO

The antidepressant activity of (+) and (-)-paeoveitol was first evaluated using the forced swimming test (FST), and (+)-paeoveitol showed potential antidepressant activity by decreasing immobility time of mice (by approximately 26.4%) in the FST at a dose of 20 mg/kg. To explore the structure-activity relationships (SARs) and obtain more potent compounds, twenty derivatives of (+)-paeoveitol were synthesized and evaluated for their agonistic activities on melatonin type I (MT1) and type II (MT2) receptors. As a results, compound 13 with an N-methylpiperazine fragment exhibited obvious effect on MT1 and MT2 receptors with EC50 values of 0.20 and 0.24 mM. Moreover, compound 13 dose-dependently decreased the immobility of mice in the FST and showed an inverted U-shaped dose-effect, and the most efficacious dose (at 40 mg/kg) was comparable to fluoxetine (20 mg/kg) with a reduced immobility time of 29.2% and 34.5%, respectively. In vivo neurochemical assays suggested that compound 13 obviously increased 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and norepinephrine (NE) levels in the mice brain, indicating that its antidepressant effects might be related to the monoaminergic system. In silico ADMET study revealed that 13 has favorable pharmacokinetic properties. These findings suggest that compound 13 could be a potential antidepressant agent. Graphical abstract.

16.
Bioorg Med Chem Lett ; 41: 127994, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775837

RESUMO

Liver fibrosis is a final result of extensive deposition of extracellular matrix (ECM) and starts with the activation and proliferation of hepatic stellate cells (HSCs). Our previous study showed that eudesmane sesquiterpenoid santamarin had cytotoxicity against hepatic stellate cell line LX2 (HSC-LX2) with IC50 values of 16.5 ± 0.7 µM. To explore the structure-activity relationships, twenty-six derivatives were synthesized by modifying the hydroxyl group, double-bond and unsaturated lactone. Cytotoxicity evaluation suggested that eight derivatives (6, 9, 13, 17, 20 and 25-27) increased activity against HSC-LX2. Especially, derivatives 17, 20 and 25 displayed obvious cytotoxicity with IC50 values of 6.4 ± 0.4, 4.6 ± 0.1, and 3.5 ± 0.1 µM, which were 3 to 5-fold higher than santamarin. Preliminary mechanisms study revealed that the active compound 20 exhibited more than 8-fold and 6-fold enhancement of inhibitory effect on the deposition of human hyaluronic acid (HA) and human laminin (HL) with IC50 values of 7.6 ± 0.6 and 3.3 ± 1.2 µM.


Assuntos
Citotoxinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Sesquiterpenos/farmacologia , Linhagem Celular , Citotoxinas/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Estrutura Molecular , Sesquiterpenos/síntese química , Sesquiterpenos/química , Relação Estrutura-Atividade
17.
Bioorg Chem ; 117: 105441, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695731

RESUMO

Under the guidance of bioassay against HSC-LX2, the EtOH extract and the EtOAc fraction of Artemisia capillaris (Yin-Chen) exhibited cytotoxic activity against HSC-LX2 with inhibitory ratios of 39.7% and 68.7% at the concentration of 400.0 µg/mL. Bioassay-guided investigation of Fr. D (the active fraction) yielded 14 new coumaric acid analogues, artemicapillasins A-N (1-14). The structures of the isolates were elucidated by spectroscopic analyses involving UV, IR, MS, 1D and 2D NMR spectra and ECD calculations. Cytotoxic activity against HSC-LX2 cells of these isolates was performed to reveal that 12 compounds demonstrated cytotoxicity with inhibitory ratios more than 50% at 400 µM. The most active artemicapillasin B (2) gave an IC50 value of 24.5 µM, which was about 7 times more toxic than the positive drug silybin (IC50, 162.3 µM). Importantly, artemicapillasin B (2) showed significant inhibition on the deposition of human collagen type I (Col I), human laminin (HL) and human hyaluronic acid (HA) with IC50 values of 11.0, 14.4 and 13.8 µM, which was about 7, 11 and 5 times more active than silybin. Artemicapillasin B (2) as an interesting antihepatic fibrosis candidate is worth in-depth study.


Assuntos
Artemisia/química , Células Estreladas do Fígado/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/antagonistas & inibidores , Colágeno Tipo I/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/metabolismo , Laminina/antagonistas & inibidores , Laminina/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
18.
Bioorg Chem ; 108: 104683, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545534

RESUMO

The EtOH extracts of the dried seeds of Alpinia katsumadai were revealed with hypoglycemic effects on db/db mice at the concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 16 new diarylheptanoid-chalcone hybrids, katsumadainols A1-A16 (1-16), together with 13 known analogues (17-29), were isolated from A. katsumadai under the guidance of bioassay. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which compounds 1-3, 5-7, 11-14, 21-25, and 27 showed PTP1B/TCPTP selective inhibition with IC50 values ranging from 22.0 to 96.7 µM, which were 2-10 times more active than sodium orthovanadate (IC50, 215.7 µM). All compounds exhibited obvious inhibition against α-glucosidase with IC50 values of 2.9-29.5 µM, indicating 6-59 times more active than acarbose (IC50, 170.9 µM). Study of enzyme kinetics indicated compounds 1, 3, and 12 were PTP1B and α-glucosidase mixed-type inhibitors with Ki values of 13.1, 12.9, 21.6 µM, and 4.9, 7.4, 3.4 µM, respectively.


Assuntos
Alpinia/enzimologia , Chalconas/farmacologia , Diarileptanoides/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Animais , Chalconas/química , Chalconas/isolamento & purificação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Camundongos , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
19.
Bioorg Chem ; 114: 105072, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144276

RESUMO

Random screening revealed that the EtOH extract of Artemisia atrovirens showed significant cytotoxicity against two human hepatoma cell lines (HepG2 and Huh7) with the inhibitory ratio of 98.9% and 99.7% at the concentration of 100 µg/mL. Further bioactivity-guided isolation of active fraction led to 16 new guaiane-type sesquiterpenoids, artematrovirenins A-P (1-16). Their structures were elucidated by extensive spectroscopic data. The absolute stereochemistry of compounds 1 and 14 was determined by single-crystal X-ray diffraction analyses. Pharmacological evaluation suggested that five compounds (3, 5, 8, 10, and 15) exhibited cytotoxicity, compounds 3 and 5 displayed cytotoxicity against HepG2 cell line with an IC50 values of 8.0 and 16.0 µM, as well as against Huh7 cell line with values of 18.2 and 32.2 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Artemisia/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/isolamento & purificação , Relação Estrutura-Atividade
20.
Angew Chem Int Ed Engl ; 60(1): 380-384, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32949177

RESUMO

The development of enantioconvergent cross-coupling of racemic alkyl halides directly with heteroarene C(sp2 )-H bonds has been impeded by the use of a base at elevated temperature that leads to racemization. We herein report a copper(I)/cinchona-alkaloid-derived N,N,P-ligand catalytic system that enables oxidative addition with racemic alkyl bromides under mild conditions. Thus, coupling with azole C(sp2 )-H bonds has been achieved in high enantioselectivity, affording a number of potentially useful α-chiral alkylated azoles, such as 1,3,4-oxadiazoles, oxazoles, and benzo[d]oxazoles as well as 1,3,4-triazoles, for drug discovery. Mechanistic experiments indicated facile deprotonation of an azole C(sp2 )-H bond and the involvement of alkyl radical species under the reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA