Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2403544121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805289

RESUMO

Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.

2.
Proc Natl Acad Sci U S A ; 120(6): e2215305120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730199

RESUMO

Photosynthesis of hydrogen peroxide (H2O2) by selective oxygen reduction is a green and cost-effective alternative to the energy-intensive anthraquinone process. Although inexpensive polymeric graphitic carbon nitride (g-C3N4) exhibits the ability to produce H2O2, its disordered and amorphous structure leads to a high recombination rate of photogenerated carriers and hinders charge transfer between layers. Herein, we predict that stacked polymeric g-C3N4 with ion intercalation (K+ and I-) can improve carrier separation and transfer by multiscale computational simulations. The electronic structures of g-C3N4 were tailored and modified by intercalating K+ and I- into the layer-by-layer structures. Guided by the computational predictions, we achieved efficient solar-driven H2O2 production by employing this facile and ion-intercalated crystalline g-C3N4. An H2O2 production rate of 13.1 mM g-1 h-1 and an apparent quantum yield of 23.6% at 400 nm were obtained. The synergistic effects of crystallinity regulation and dual interstitial doping engineering triggered the formation of new light absorption centers, the establishment of rapid charge diffusion channels, and the enhancement of two-electron oxygen reduction characteristics. This work sheds light on the dual tuning of crystallinity and electronic structure and broadens the design principles of organic-conjugated polymer photocatalysts for environmental remediation and energy conservation.

3.
Proc Natl Acad Sci U S A ; 120(20): e2302407120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155859

RESUMO

Clarifying the reaction pathways at the solid-water interface and in bulk water solution is of great significance for the design of heterogeneous catalysts for selective oxidation of organic pollutants. However, achieving this goal is daunting because of the intricate interfacial reactions at the catalyst surface. Herein, we unravel the origin of the organic oxidation reactions with metal oxide catalysts, revealing that the radical-based advanced oxidation processes (AOPs) prevail in bulk water but not on the solid catalyst surfaces. We show that such differing reaction pathways widely exist in various chemical oxidation (e.g., high-valent Mn3+ and MnOX) and Fenton and Fenton-like catalytic oxidation (e.g., Fe2+ and FeOCl catalyzing H2O2, Co2+ and Co3O4 catalyzing persulfate) systems. Compared with the radical-based degradation and polymerization pathways of one-electron indirect AOP in homogeneous reactions, the heterogeneous catalysts provide unique surface properties to trigger surface-dependent coupling and polymerization pathways of a two-electron direct oxidative transfer process. These findings provide a fundamental understanding of catalytic organic oxidation processes at the solid-water interface, which could guide the design of heterogeneous nanocatalysts.

4.
Environ Sci Technol ; 57(51): 21540-21549, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38086095

RESUMO

Interfacial electron transfer (IET) is essential for chemical and biological transformation of pollutants, operative across diverse lengths and time scales. This Perspective presents an array of multiscale molecular simulation methodologies, supplemented by in situ monitoring and imaging techniques, serving as robust tools to decode IET enhancement mechanisms such as interface molecular modification, catalyst coordination mode, and atomic composition regulation. In addition, three IET-based pollutant transformation systems, an electrocatalytic oxidation system, a bioelectrochemical spatial coupling system, and an enzyme-inspired electrocatalytic system, were developed, demonstrating a high effect in transforming and degrading pollutants. To improve the effectiveness and scalability of IET-based strategies, the refinement of these systems is necessitated through rigorous research and theoretical exploration, particularly in the context of practical wastewater treatment scenarios. Future endeavors aim to elucidate the synergy between biological and chemical modules, edit the environmental functional microorganisms, and harness machine learning for designing advanced environmental catalysts to boost efficiency. This Perspective highlights the powerful potential of IET-focused environmental remediation strategies, emphasizing the critical role of interdisciplinary research in addressing the urgent global challenge of water pollution.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Elétrons , Transporte de Elétrons , Oxirredução , Catálise , Poluentes Químicos da Água/análise
5.
Proc Natl Acad Sci U S A ; 116(38): 18827-18833, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484775

RESUMO

The exposed active sites of semiconductor catalysts are essential to the photocatalytic energy conversion efficiency. However, it is difficult to directly observe such active sites and understand the photogenerated electron/hole pairs' dynamics on a single catalyst particle. Here, we applied a quasi-total internal reflection fluorescence microscopy and laser-scanning confocal microscopy to identify the photocatalytic active sites at a single-molecule level and visualized the photogenerated hole-electron pair dynamics on a single TiO2 particle, the most widely used photocatalyst. The experimental results and density functional theory calculations reveal that holes and electrons tend to reach and react at the same surface sites, i.e., crystal edge/corner, within a single anatase TiO2 particle owing to the highly exposed (001) and (101) facets. The observation provides solid proof for the existence of the surface junction "edge or corner" on single TiO2 particles. These findings also offer insights into the nature of the photocatalytic active sites and imply an activity-based strategy for rationally engineering catalysts for improved photocatalysis, which can be also applied for other catalytic materials.

6.
Environ Sci Technol ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319703

RESUMO

The biogeochemical cycle of iron is of great importance to living organisms on Earth, and dissimilatory metal-reducing bacteria (DMRB) with the capability of reducing hematite (α-Fe2O3) by outer-membrane (OM) cytochromes play a great role in the iron cycle. However, the dynamic binding of cytochromes to α-Fe2O3 at the molecular level and the resulting impact on the photon-to-electron conversion of α-Fe2O3 for the iron cycle are not fully understood. To address these issues, two-dimensional IR correlation analysis coupled with molecular dynamics (MD) simulations was conducted for an OmcA-Fe2O3 system as OmcA bonds stronger with hematite in a typical DMRB,Shewanella. The photoelectric response of α-Fe2O3 with the OmcA coating was evaluated at three different potentials. Specifically, the binding groups from OmcA to α-Fe2O3 were in the sequence of carboxyl groups, amide II, and amide I. Further MD analysis reveals that both electrostatic interactions and hydrogen bonds played essential roles in the binding process, leading to the structural changes of OmcA to facilitate iron reduction. Moreover, the OmcA coating could store the photogenerated electrons from α-Fe2O3 like a capacitor and utilize the stored electrons for α-Fe2O3 reduction in dark and anoxic environments, further driving the biogeochemical cycle of iron. These investigations give the dynamic information on the OM protein/hematite interaction and provide fundamental insights into the biogeochemical cycle of iron by taking the photon-induced redox chemistry of iron oxide into consideration.

7.
Environ Sci Technol ; 55(11): 7531-7540, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974407

RESUMO

Cadmium ion (Cd2+) is a common environmental pollutant with high biotoxicity. Interestingly, the Cd2+ biotoxicity can be alleviated by the coexisting selenite (SeO32-), which induces the formation of cadmium selenide-rich nanoparticles (CdSe NPs) under the function of thiol-capping peptides. However, the detailed biochemical mechanisms by which Cd and Se are synergistically transformed into CdSe NPs in living organisms remain unclear so far. Here, we shed light on the molecular basis of such biotransformation processes in Caenorhabditis elegans by focusing on the roles of several key thiol-capping peptides. By monitoring the compositional and structural changes of the Cd and Se species and the genetic-level responses of nematodes, we revealed the specific roles of glutathione (GSH) and phytochelatins (PCs) in mediating the CdSe NP formation. With the aid of in vitro bioassembly assay and density functional theory calculations, the detailed Cd-Se interaction pathways were further deciphered: the ingested Cd binds predominantly to GSH and PCs in sequence, then further interacts with selenocysteine to form tetrahedral-structured PC2-Cd2-Sec2 complex, and ultimately grows into CdSe NPs. This work provides molecular-level insights into the Cd-Se interaction in C. elegans and lays a basis for controlling the ecological and health risks of heavy metals in polluted environment.


Assuntos
Cádmio , Selênio , Animais , Biotransformação , Caenorhabditis elegans , Glutationa/metabolismo , Fitoquelatinas/metabolismo , Compostos de Sulfidrila
8.
Inorg Chem ; 59(15): 10620-10627, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32689800

RESUMO

Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R' [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R' and Az is found on the basis of a comprehensive analysis of ultraviolet-visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R' and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1-Cu-NHis2 plane and the SCys-Cu-axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.


Assuntos
Azurina/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Eletrônica , Oxirredução , Conformação Proteica
9.
J Am Chem Soc ; 139(35): 12149-12152, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28825808

RESUMO

Biofabrication of nanomaterials is currently constrained by a low production efficiency and poor controllability on product quality compared to chemical synthetic routes. In this work, we show an attractive new biosynthesis system to break these limitations. A directed production of selenium-containing nanoparticles in Shewanella oneidensis MR-1 cells, with fine-tuned composition and subcellular synthetic location, was achieved by modifying the extracellular electron transfer chain. By taking advantage of its untapped intracellular detoxification and synthetic power, we obtained high-purity, uniform-sized cadmium selenide nanoparticles in the cytoplasm, with the production rates and fluorescent intensities far exceeding the state-of-the-art biosystems. These findings may fundamentally change our perception of nanomaterial biosynthesis process and lead to the development of fine-controllable nanoparticles biosynthesis technologies.

10.
Phys Chem Chem Phys ; 19(41): 28344-28353, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29034943

RESUMO

Converting CO2 into valuable chemicals and fuels is one of the most practical routes for reducing CO2 emissions while fossil fuels continue to dominate the energy sector. Noble-metal-free NiFe bimetal nanoparticles have shown good catalytic activity in CO2 conversion. Herein we theoretically evaluated the catalytic performance and possible mechanisms of NiFe-based nanoclusters for hydrogenating CO2 to form formic acid and CO through bicarbonate by using a periodic and self-consistent density functional theory (DFT) simulation. The theoretical results illustrated that NiFe nanoclusters could have good catalytic activity and selectivity for HCO3- reduction to formic acid and the possible pathway is that HCO3- preferred to react with adsorbed H atoms of H2 on NiFe alloy nanoclusters through the carbon atom site. Moreover, the NiFe alloy nanoclusters with the Fe atom exposed on the surface of the Ni cluster showed better performance with a lower energy barrier compared to that with Fe doped in the corner of the Ni cluster. However, the generation of CO from HCO3- reduction was shown to be neither thermodynamically nor kinetically favorable on NiFe alloy nanoclusters. Additionally, the simulation results also suggested that it was thermodynamically unfavorable for further hydrogenated reduction of formic acid to formaldehyde on NiFe alloy nanoclusters themselves as well as supported on graphene. In summary, a molecular-level insight of CO2 reduction to valuable products on NiFe nanoclusters is offered in this study, which may provide some useful information for guiding the design of NiFe-based catalytic materials for efficient CO2 conversion to useful fuels.

11.
Phys Chem Chem Phys ; 19(48): 32580-32588, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29189841

RESUMO

Extracellular electron transfer (EET) occurs from outer-membrane proteins to electron acceptors. Heme(ii) is the active center of outer-membrane proteins and delivers electrons to acceptors or mediators such as riboflavin, a redox active chromophore present in organisms. However, the EET mechanism via mediators, especially the electron transfer process from outer-membrane proteins to mediators, has not been well documented yet. In this work, the mechanism behind the electron transfer from heme(ii) to riboflavin is investigated by using in situ ultraviolet visible and fluorescence spectroelectrochemical analysis, which provides the information regarding the structural change and electrochemical characteristics of species in the electron transfer process. It is found that hemin(iii), the oxidized form of heme(ii), is electrolyzed to an intermediate "hemx(ii)" without structural changes, and is then transformed to heme(ii) by conjugating with riboflavin and its radicals. Heme(ii) is able to activate riboflavin reduction via a two-electron two-proton pathway in aqueous solution. The mechanisms proposed on the basis of experimental results are further confirmed by density functional theory calculations. The results about the electron transfer from hemx(ii) (or heme(ii)) to riboflavin are useful not only for understanding the EET mechanisms, but also for maximizing the role of riboflavin in biogeochemical cycling and environmental bioremediation.

12.
Ecotoxicology ; 24(10): 2067-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407711

RESUMO

Cu/CuxO nanoparticles (NPs) with different morphologies have been synthesized with glucose as a reducing agent. The X-ray diffraction and Scanning electron microscopy imaging show that the Cu/CuxO NPs have fine crystalline peaks with homogeneous polyhedral, flower-like, and thumbtack-like morphologies. Their antimicrobial activities were evaluated on inactivation of Escherichia coli using a fluorescence-based live/dead staining method. Dissolution of copper ions from these NPs was determined. Results demonstrated a significant growth inhibition for these NPs with different morphologies, and the flower-like Cu/CuxO NPs were the most effective form, where more copper ions were dissolved into the culture media. Surface free energy calculations based on first-principle density functional theory show that different crystal facets of the copper NPs have diverse surface energy, indicating the highest reactivity of the flower-like NPs, which is consistent with the results from the dissolution study and antimicrobial activity test. Together, these results suggest that the difference between the surface free energy may be a cause for their morphology-dependent antimicrobial activity.


Assuntos
Anti-Infecciosos/farmacologia , Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/análise , Anti-Infecciosos/química , Cobre/química , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Nanopartículas Metálicas/química
13.
Adv Mater ; 36(14): e2310657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193844

RESUMO

Extracting lithium selectively and efficiently from brine sources is crucial for addressing energy and environmental challenges. The electrochemical system employing LiMn2O4 (LMO) electrodes has been recognized as an effective method for lithium recovery. However, the lithium selectivity and stability of LMO need further enhancement for its practical applications. Herein, the Al-doped LMO with reduced lattice constant is successfully fabricated through a facile one-step solid-state sintering method, leading to enhanced lithium selectivity. The reduced lattice constant in Al-doped LMO is proved through spectroscopic analyses and theoretic calculations. Compared to the original LMO, the Al-doped LMO (LiAl0.05Mn1.95O4, LMO-Al0.05) exhibits highercapacitance, lower resistance, and improved stability. Moreover, the LMO-Al0.05 with reduced lattice constant can offer higher Li+ diffusion coefficient and lower intercalation energy revealed by cyclic voltammetry and multiscale simulations. When employed in hybrid capacitive deionization (CDI), the LMO-Al0.05 obtains a Li+ intercalation capacity of 21.7 mg g-1 and low energy consumption of 2.6 Wh mol-1 Li+. Importantly, the LMO-Al0.05 achieves a high Li+ extraction percentage (≈86%) with Li+/Na+ and Li+/Mg2+ selectivity of 1653.8 and 434.9, respectively, in synthetic brine. The results demonstrate that the Al-doped LMO with reduced lattice constant could be a sustainable solution for electrochemical lithium extraction.

14.
Nat Commun ; 15(1): 193, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167494

RESUMO

Direct electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction presents a burgeoning alternative to the conventional energy-intensive anthraquinone process for on-site applications. Nevertheless, its adoption is currently hindered by inferior H2O2 selectivity and diminished H2O2 yield induced by consecutive H2O2 reduction or Fenton reactions. Herein, guided by theoretical calculations, we endeavor to overcome this challenge by activating a main-group Pb single-atom catalyst via a local micro-environment engineering strategy employing a sulfur and oxygen super-coordinated structure. The main-group catalyst, synthesized using a carbon dot-assisted pyrolysis technique, displays an industrial current density reaching 400 mA cm-2 and elevated accumulated H2O2 concentrations (1358 mM) with remarkable Faradaic efficiencies. Both experimental results and theoretical simulations elucidate that S and O super-coordination directs a fraction of electrons from the main-group Pb sites to the coordinated oxygen atoms, consequently optimizing the *OOH binding energy and augmenting the 2e- oxygen reduction activity. This work unveils novel avenues for mitigating the production-depletion challenge in H2O2 electrosynthesis through the rational design of main-group catalysts.

15.
J Colloid Interface Sci ; 672: 383-391, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848622

RESUMO

Electrocatalytic nitrate removal offers a sustainable approach to alleviate nitrate pollution and to boost the anthropogenic nitrogen cycle, but it still suffers from limited removal efficiency at high rates, especially at low levels of nitrate. Herein, we report the near-complete removal of low-level nitrate (10-200 ppm) within 2 h using ultrathin cobalt-based nanosheets (CoNS) containing surface oxygen, which was fabricated from in-situ electrochemical reconstruction of conventional nanosheets. The average nitrate removal of 99.7 % with ammonia selectivity of 98.2 % in 9 cyclic runs ranked in the best of reported catalysts. Powered by a solar cell under the winter sun, the full-cell nitrate electrolysis system, equipped with ultrathin CoNS, achieved 100 % nitrogen gas selectivity and 99.6 % total nitrogen removal. The in-situ Fourier Transform Infrared included experiments and theoretical computations revealed that in-situ electrochemical reconstruction not only increased electrochemical active surface area but also constructed surface oxygen in active sites, leading to enhanced stabilization of nitrate adsorption in a symmetry breaking configuration and charge transfer, contributing to near-complete nitrate removal on ultrathin CoNS. This work provides a strategy to design ultrathin nanocatalysts for nitrate removal.

16.
Nat Commun ; 15(1): 4718, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830881

RESUMO

Artificial photosynthesis using carbon nitride (g-C3N4) holds a great promise for sustainable and cost-effective H2O2 production, but the high carrier recombination rate impedes its efficiency. To tackle this challenge, we propose an innovative method involving multispecies iodine mediators (I-/I3-) intercalation through a pre-photo-oxidation process using potassium iodide (suspected deteriorated "KI") within the g-C3N4 framework. Moreover, we introduce an external electric field by incorporating cationic methyl viologen ions to establish an auxiliary electron transfer channel. Such a unique design drastically improves the separation of photo-generated carriers, achieving an impressive H2O2 production rate of 46.40 mmol g-1 h-1 under visible light irradiation, surpassing the most visible-light H2O2-producing systems. Combining various advanced characterization techniques elucidates the inner photocatalytic mechanism, and the application potential of this photocatalytic system is validated with various simulation scenarios. This work presents a significative strategy for preparing and applying highly efficient g-C3N4-based catalysts in photochemical H2O2 production.

17.
Adv Sci (Weinh) ; : e2402732, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923364

RESUMO

The development of in situ techniques to quantitatively characterize the heterogeneous reactions is essential for understanding physicochemical processes in aqueous phase. In this work, a new approach coupling in situ UV-vis spectroscopy with a two-step algorithm strategy is developed to quantitatively monitor heterogeneous reactions in a compact closed-loop incorporation. The algorithm involves the inverse adding-doubling method for light scattering correction and the multivariate curve resolution-alternating least squares (MCR-ALS) method for spectral deconvolution. Innovatively, theoretical spectral simulations are employed to connect MCR-ALS solutions with chemical molecular structural evolution without prior information for reference spectra. As a model case study, the aqueous adsorption kinetics of bisphenol A onto polyamide microparticles are successfully quantified in a one-step UV-vis spectroscopic measurement. The practical applicability of this approach is confirmed by rapidly screening a superior adsorbent from commercial materials for antibiotic wastewater adsorption treatment. The demonstrated capabilities are expected to extend beyond monitoring adsorption systems to other heterogeneous reactions, significantly advancing UV-vis spectroscopic techniques toward practical integration into automated experimental platforms for probing aqueous chemical processes and beyond.

18.
Nat Commun ; 15(1): 2327, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485966

RESUMO

Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.

19.
Nat Commun ; 15(1): 5314, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38906879

RESUMO

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

20.
Environ Sci Technol ; 47(2): 1033-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23244024

RESUMO

Phenazines, as a type of electron shuttle, are involved in various biological processes to facilitate microbial energy metabolism and electron transfer. They constitute a large group of nitrogen-containing heterocyclic compounds, which can be produced by a diverse range of bacteria or by artificial synthesis. They vary significantly in their properties, depending mainly on the nature and position of substitutent group. Thus, it is of great interest to find out the most favorable substituent type and molecular structure of phenazines for electron transfer routes. Here, the impacts of the substituent group on the reduction potentials of phenazine-type redox mediators in aqueous solution were investigated by quantum chemical calculations, and the calculation results were further validated with experimental data. The results show that the reaction free energy was substantially affected by the location of substituent groups on the phenazine molecule and the protonated water clusters. For the main proton addition process, the phenazines substituted with electron-donating groups and those with electron-withdrawing groups interacted with different protonated water clusters, attributed to the proximity effect of water molecules on proton transfer. Thus, high energy conversion efficiency could be achieved by controlling electron flow route with appropriate substituted phenazines to reduce the biological energy acquisition. This study provides useful information for designing efficient redox mediators to promote electron transfer between microbes and terminal acceptors, which are essential to bioenergy recovery from wastes and environmental bioremediation.


Assuntos
Bactérias/metabolismo , Fenazinas/química , Biodegradação Ambiental , Transporte de Elétrons , Modelos Moleculares , Oxirredução , Prótons , Teoria Quântica , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA