RESUMO
Pediatric pial arteriovenous shunts in the brain and spine are challenging to understand because of low incidence, variable presentation, and associations with genetic syndromes. What is known about their natural history comes from reviews of small series. To better understand the natural history and role for intervention, two cases are presented followed by a review of the literature. In the first case, an infant with a prior history of intracranial hemorrhage from a ruptured pial fistula returns for elective embolization for a second pial fistula which was found to be spontaneously thrombosed 2 weeks later. In the second case, a 5-year-old with a vertebro-vertebral fistula, identified on work up for a heart murmur and documented with diagnostic angiography, is brought for elective embolization 6 weeks later where spontaneous thrombosis is identified. In reviewing the literature on pediatric single-hole fistulae of the brain and spine, the authors offer some morphologic considerations for identifying which high-flow fistulae may undergo spontaneous thrombosis to decrease the potentially unnecessary risk associated with interventions in small children.
Assuntos
Fístula Arteriovenosa , Embolização Terapêutica , Trombose , Lactente , Humanos , Criança , Pré-Escolar , Angiografia Cerebral , Fístula Arteriovenosa/terapia , EncéfaloRESUMO
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. SMN upregulators offer clinical improvements and increased survival in SMA patients, although significant unmet needs remain. Myostatin, a TGF-ß superfamily signaling molecule that binds to the activin II receptor, negatively regulates muscle growth; myostatin inhibition is a promising therapeutic strategy for enhancing muscle. Combining myostatin inhibition with SMN upregulation, a comprehensive therapeutic strategy targeting the whole motor unit, offers promise in SMA. Taldefgrobep alfa is a novel, fully human recombinant protein that selectively binds to myostatin and competitively inhibits other ligands that signal through the activin II receptor. Given a robust scientific and clinical rationale and the favorable safety profile of taldefgrobep in patients with neuromuscular disease, the RESILIENT phase 3, randomized, placebo-controlled trial is investigating taldefgrobep as an adjunct to SMN upregulators in SMA (NCT05337553). This manuscript reviews the role of myostatin in muscle, explores the preclinical and clinical development of taldefgrobep and introduces the phase 3 RESILIENT trial of taldefgrobep in SMA.
Assuntos
Atrofia Muscular Espinal , Miostatina , Humanos , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Ensaios Clínicos Fase III como Assunto , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/uso terapêutico , Animais , Proteínas Recombinantes/uso terapêuticoRESUMO
Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.
Assuntos
Atrofia Muscular Espinal , Processamento Alternativo , Animais , Modelos Animais de Doenças , Progressão da Doença , Éxons , Feminino , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/metabolismo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio MotorRESUMO
A pathological hallmark of spinal muscular atrophy (SMA) is severe motor neuron (MN) loss, which results in muscle weakness and often infantile or childhood mortality. Although it is well established that deficient expression of survival motor neuron (SMN) protein causes SMA, the molecular pathways that execute MN cell death are poorly defined. The c-Jun NH2-terminal kinases (JNKs) are stress-activated kinases with multiple substrates including c-Jun, which can be activated during neuronal injury and neurodegenerative disease leading to neuronal apoptosis. Recently, increased JNK-c-Jun signaling was reported in SMA raising the possibility that JNK inhibitors could be a novel treatment for this disease. We examined JNK-c-Jun activity in SMA mouse and human cultured cells and tissues. Anisomycin treatment of human SMA fibroblasts and sciatic nerve ligation in SMA mice provoked robust phosphorylated-c-Jun (p-c-Jun) expression indicating that SMN-deficiency does not prevent activation of the stress-induced JNK-c-Jun signaling pathway. Despite retained capacity to activate JNK-c-Jun, we observed no basal increase of p-c-Jun levels in SMA compared to control cultured cells, human or mouse spinal cord tissues, or mouse MNs during the period of MN loss in severe SMA model mice. In both controls and SMA, ~50% of α-MN nuclei express p-c-Jun with decreasing expression during the early postnatal period. Together these studies reveal no evidence of stress-activated JNK-c-Jun signaling in MNs of SMA mice or human tissues, but do highlight the important role of JNK-c-Jun activity during normal MN development raising caution about JNK antagonism in this pediatric neuromuscular disease.
Assuntos
Anisomicina/farmacologia , Atrofia Muscular Espinal/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/citologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismoRESUMO
Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of α-motor neurons, leading to profound skeletal muscle atrophy. Patients also suffer from decreased bone mineral density and increased fracture risk. The majority of treatments for SMA, approved or in clinic trials, focus on addressing the underlying cause of disease, insufficient production of full-length SMN protein. While restoration of SMN has resulted in improvements in functional measures, significant deficits remain in both mice and SMA patients following treatment. Motor function in SMA patients may be additionally improved by targeting skeletal muscle to reduce atrophy and improve muscle strength. Inhibition of myostatin, a negative regulator of muscle mass, offers a promising approach to increase muscle function in SMA patients. Here we demonstrate that muSRK-015P, a monoclonal antibody which specifically inhibits myostatin activation, effectively increases muscle mass and function in two variants of the pharmacological mouse model of SMA in which pharmacologic restoration of SMN has taken place either 1 or 24 days after birth to reflect early or later therapeutic intervention. Additionally, muSRK-015P treatment improves the cortical and trabecular bone phenotypes in these mice. These data indicate that preventing myostatin activation has therapeutic potential in addressing muscle and bone deficiencies in SMA patients. An optimized variant of SRK-015P, SRK-015, is currently in clinical development for treatment of SMA.
Assuntos
Atrofia Muscular Espinal/genética , Miostatina/genética , Miostatina/fisiologia , Animais , Anticorpos Monoclonais , Modelos Animais de Doenças , Camundongos , Neurônios Motores/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Miostatina/antagonistas & inibidores , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.
Assuntos
Neurônios Motores/enzimologia , Atrofia Muscular Espinal/enzimologia , Junção Neuromuscular/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismoRESUMO
Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.
Assuntos
Folistatina/farmacologia , Fatores Imunológicos/farmacologia , Atrofia Muscular Espinal/tratamento farmacológico , Splicing de RNA/efeitos dos fármacos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/agonistas , Adolescente , Adulto , Idade de Início , Animais , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Miostatina/antagonistas & inibidores , Miostatina/genética , Miostatina/metabolismo , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismoRESUMO
Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a â¼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.
Assuntos
Isocumarinas/administração & dosagem , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Piperazinas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacocinética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éxons/genética , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/patologia , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Pele/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteína 2 de Sobrevivência do Neurônio Motor/sangueRESUMO
The November 2013 online publication of ARUBA, the first multi-institutional randomized controlled trial for unruptured brain arteriovenous malformations (AVMs), has sparked over 100 publications in protracted debates METHODS: This study sought to examine inpatient management patterns of brain AVMs from 2009 to 2016 and observe if changes in U.S. inpatient management were attributable to the ARUBA publication using interrupted time series of brain AVM studies from the National Inpatient Sample data 2009-2016. Outcomes of interest were use of embolization, surgery, combined embolization and microsurgery, radiotherapy, and observation during that admission. An interrupted time series design compared management trends before and after ARUBA. Segmented linear regression analysis tested for immediate and long-term impacts of ARUBA on management. RESULTS: Elective and asymptomatic patient admissions declined 2009-2016. In keeping with the ARUBA findings, observation for unruptured brain AVMs increased and microsurgery decreased. However, embolization, radiosurgery, and combined embolization and microsurgery also increased. For ruptured brain AVMs, treatment modality trends remained positive with even greater rates of observation, embolization, and combined embolization and microsurgery occurring after ARUBA (data on radiosurgery were scarce). None of the estimates for the change in trends were statistically significant. CONCLUSIONS: The publication of ARUBA was associated with a decrease in microsurgery and increase in observation for unruptured brain AVMs in the US. However, inpatient radiotherapy, embolization, and combined embolization and surgery also increased, suggesting trends moved counter to ARUBA's conclusions. This analysis suggested that ARUBA had a small impact as clinicians rejected ARUBA's findings in managing unruptured brain AVMs.
Assuntos
Embolização Terapêutica , Análise de Séries Temporais Interrompida , Malformações Arteriovenosas Intracranianas , Humanos , Malformações Arteriovenosas Intracranianas/terapia , Estados Unidos , Embolização Terapêutica/métodos , Feminino , Pacientes Internados , Microcirurgia , Masculino , Radiocirurgia/tendências , Adulto , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BACKGROUND: Significant advances have been reported recently in the genetic and mechanistic characterization of extracranial venous malformations. However, intracranial purely venous malformations (icVM) analogous to those outside the CNS have not been systematically described. PURPOSE: We sought to ascertain whether such an entity as icVM could in fact be identified, distinct from previously described CNS venous anomalies and analogous to extracranial venous malformations. METHODS: Our prospectively collected pediatric cerebrovascular database was reviewed to identify patients with icVM; 1458 consecutive angiograms and/or angiographic interventions performed on 706 children at our institution from October, 2006 through May, 2019 were evaluated, in addition to outside imaging studies on 192 additional patients sent to our Vascular Anomalies Center for cerebrovascular review during the same time period. Thus, the cohort consisted of 898 children. RESULTS: Nineteen of 898 patients (2.1%) were found to harbor icVM, including 9 (47.3%) with sinus pericranii, 15 (78.9%) with associated large, complex extracranial venous malformations, and 3 (15.7%) with neurocognitive delay. There was no intracranial hemorrhage or venous hypertension seen in the cohort. Asymptomatic venous thrombosis in the superior sagittal sinus was seen in three patients. CONCLUSION: Venous malformations, both extracranial and icVM, share many characteristics that are distinct from developmental venous anomalies. icVM were not associated with venous hypertension. The underlying genetic mutations involved in the development of icVM, germ-line or somatic, remain to be elucidated, but may very well involve shared mechanisms and pathways with extracranial venous malformations.
Assuntos
Seio Pericrânio , Malformações Vasculares , Criança , Estudos de Coortes , Humanos , Incidência , Seio Sagital SuperiorRESUMO
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous PDAPP mice relative to littermate controls. However, after overtraining to a criterion of equivalent navigational performance, a series of memory retention tests revealed faster forgetting in the PDAPP group. Very limited retraining was sufficient to reinstate good memory in both groups, indicating that their faster forgetting may be due to retrieval failure rather than trace decay. In Experiment 2, 6-mo-old PDAPP and controls were required to learn each of a series of spatial locations to criterion with their memory assessed 10 min after learning each location. No memory deficit was apparent in the PDAPP mice initially, but a deficit built up through the series of locations suggestive of increased sensitivity to interference. Faster forgetting and increased interference may each reflect a difficulty in accessing memory traces. This interpretation of one aspect of the cognitive deficit in human mutant APP mice has parallels to deficits observed in patients with Alzheimer's disease, further supporting the validity of transgenic models of the disease.
Assuntos
Doença de Alzheimer/fisiopatologia , Memória/fisiologia , Comportamento Espacial/fisiologia , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos TransgênicosRESUMO
The behavioral and biochemical impact of active immunization against human beta-amyloid (Abeta) was assessed using male transgenic (Tg) mice overexpressing a human mutant amyloid precursor protein (heterozygous PDAPP mice) and littermate controls. Administration of aggregated Abeta42 occurred at monthly intervals from 7 months ("prevention") or 11 months ("reversal"), followed by double-blind behavioral training at 16 months on a cued task, then serial spatial learning in a water maze. Using a 2 x 2 design, with Abeta42 adjuvanted with MPL-AF (adjuvant formulation of monophosphoryl lipid A) or MPL-AF alone, PDAPP mice were impaired compared with non-Tg littermates on two separate measures of serial spatial learning. Immunization caused no overall rescue of learning but limited the accumulation of total Abeta and Abeta42 levels in cortex and hippocampus by up to 60%. In immunized PDAPP mice, significant negative correlations were observed between hippocampal and cortical Abeta levels and learning capacity, particularly in the prevention study, and correlations between learning capacity and antibody titer. Moreover, a subset of PDAPP mice with very low Abeta levels (hippocampal Abeta levels of <6000 ng/g or cortical Abeta levels of <1000 ng/g) was indistinguishable from non-Tg controls. Mice in the prevention study were also rescued from cognitive impairment more effectively than those in the reversal study. The combination of variability in antibody response and differential levels of Abeta accumulation across the population of immunized PDAPP mice may be responsible for success in cognitive protection with only a subset of these animals, but the similarity to the findings of certain human vaccination trials is noteworthy.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Imunização , Aprendizagem em Labirinto/fisiologia , Mutação , Fragmentos de Peptídeos/imunologia , Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/genética , Animais , Anticorpos/sangue , Comportamento Animal/fisiologia , Córtex Cerebral/metabolismo , Sinais (Psicologia) , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Natação , Análise e Desempenho de TarefasRESUMO
OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS: At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS: SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana , Proteínas dos Microfilamentos , Atrofia Muscular Espinal , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Proteína 1 de Sobrevivência do Neurônio Motor , Animais , Biomarcadores/metabolismo , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/antagonistas & inibidores , Proteína 1 de Sobrevivência do Neurônio Motor/biossíntese , Proteína 1 de Sobrevivência do Neurônio Motor/genéticaRESUMO
SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.
Assuntos
Compostos Azo/farmacologia , Descoberta de Drogas , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Pirimidinas/farmacologia , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Compostos Azo/efeitos adversos , Compostos Azo/uso terapêutico , Humanos , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , SegurançaRESUMO
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
Assuntos
Encéfalo/efeitos dos fármacos , Canal de Potássio ERG1/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Piridazinas/química , Administração Oral , Animais , Encéfalo/metabolismo , Linhagem Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1/antagonistas & inibidores , Humanos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular Espinal/genética , Piridazinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Splicing de RNA , Ratos Sprague-Dawley , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
Spinal muscular atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene, resulting in low levels of functional SMN protein. We have reported recently the identification of small molecules (coumarins, iso-coumarins and pyrido-pyrimidinones) that modify the alternative splicing of SMN2, a paralogous gene to SMN1, restoring the survival motor neuron (SMN) protein level in mouse models of SMA. Herein, we report our efforts to identify a novel chemotype as one strategy to potentially circumvent safety concerns from earlier derivatives such as in vitro phototoxicity and in vitro mutagenicity associated with compounds 1 and 2 or the in vivo retinal findings observed in a long-term chronic tox study with 3 at high exposures only. Optimized representative compounds modify the alternative splicing of SMN2, increase the production of full length SMN2 mRNA, and therefore levels of full length SMN protein upon oral administration in two mouse models of SMA.
Assuntos
Benzamidas/química , Benzamidas/farmacologia , Atrofia Muscular Espinal/genética , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Benzamidas/farmacocinética , Desenho de Fármacos , Camundongos , Modelos Moleculares , Atrofia Muscular Espinal/tratamento farmacológicoRESUMO
Spinal muscular atrophy (SMA) is caused by defects in the survival motor neuron 1 (SMN1) gene that encodes survival motor neuron (SMN) protein. The majority of therapeutic approaches currently in clinical development for SMA aim to increase SMN protein expression and there is a need for sensitive methods able to quantify increases in SMN protein levels in accessible tissues. We have developed a sensitive electrochemiluminescence (ECL)-based immunoassay for measuring SMN protein in whole blood with a minimum volume requirement of 5µL. The SMN-ECL immunoassay enables accurate measurement of SMN in whole blood and other tissues. Using the assay, we measured SMN protein in whole blood from SMA patients and healthy controls and found that SMN protein levels were associated with SMN2 copy number and were greater in SMA patients with 4 copies, relative to those with 2 and 3 copies. SMN protein levels did not vary significantly in healthy individuals over a four-week period and were not affected by circadian rhythms. Almost half of the SMN protein was found in platelets. We show that SMN protein levels in C/C-allele mice, which model a mild form of SMA, were high in neonatal stage, decreased in the first few weeks after birth, and then remained stable throughout the adult stage. Importantly, SMN protein levels in the CNS correlated with SMN levels measured in whole blood of the C/C-allele mice. These findings have implications for the measurement of SMN protein induction in whole blood in response to SMN-upregulating therapy.
Assuntos
Imunoensaio/métodos , Medições Luminescentes/métodos , Proteínas do Complexo SMN/sangue , Animais , Plaquetas/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Humanos , Camundongos , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/terapia , Estabilidade Proteica , Proteínas do Complexo SMN/líquido cefalorraquidiano , Proteínas do Complexo SMN/metabolismoRESUMO
INTRODUCTION AND OBJECTIVE: Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. METHODS: SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. RESULTS: Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. CONCLUSION: This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers.
Assuntos
Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/genética , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Regulação da Expressão Gênica , Teste de Complementação Genética , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Oligonucleotídeos Antissenso/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismoRESUMO
Spinal muscular atrophy (SMA) is the leading genetic cause of infant and toddler mortality, and there is currently no approved therapy available. SMA is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. These mutations or deletions result in low levels of functional SMN protein. SMN2, a paralogous gene to SMN1, undergoes alternative splicing and exclusion of exon 7, producing an unstable, truncated SMNΔ7 protein. Herein, we report the identification of a pyridopyrimidinone series of small molecules that modify the alternative splicing of SMN2, increasing the production of full-length SMN2 mRNA. Upon oral administration of our small molecules, the levels of full-length SMN protein were restored in two mouse models of SMA. In-depth lead optimization in the pyridopyrimidinone series culminated in the selection of compound 3 (RG7800), the first small molecule SMN2 splicing modifier to enter human clinical trials.