Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioorg Chem ; 128: 106066, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964500

RESUMO

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve clinical translation further. Enlightened by the bile acids' moiety magic characters, thirty podophyllotoxin-linked bile acid derivatives had been designed and synthesized. The cytotoxicity of these compounds in vitro was evaluated on HepG2, HCT-116, A549 and MDCK cell lines. After conjunction with bile acids, most of the derivatives (IC50 = 0.066-0.831 µM) were more potent against above three types of tumor cells than Etoposide (VP-16, IC50 = 4.319-41.080 µM) and exhibited similar antitumor activity compared with doxorubicin (DOX, IC50 = 0.230-0.745 µM). Moreover, structure-activity relationship displayed the length of the linker chain between podophyllotoxin and bile acids affected the cytotoxicity. Especially, compound 23 exhibited strong activity against HepG2 cell lines (IC50 = 0.188 ± 0.01 µM) than MDCK cell lines (IC50 = 4.780 ± 0.50 µM) and its SI (IC50MDCK/IC50HepG2) value of compound 23 was 25.4. Further antitumor mechanism studies showed that compound 23 acted as Topo Ⅱ inhibition and induced cell apoptosis with S cell cycle arrest. In particular, compound 23 showed valid antitumor efficacy at 10 mg/kg by intraperitoneal administration with a tumor inhibition rate of 60.9% in the Hepa1-6 xenograft mice model. The current research displayed that introduction of bile acids contributed to improve selectivity and activity to cell, and compound 23 could be a promising anti-tumor candidate.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Apoptose , Ácidos e Sais Biliares/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo/farmacologia , Glucosídeos/farmacologia , Humanos , Camundongos , Estrutura Molecular , Podofilotoxina , Relação Estrutura-Atividade
2.
Pharmacol Res ; 163: 105242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075491

RESUMO

Over a short span of two decades, the central role of angiogenesis in the treatment of wound healing, diverse cancers, nerve defect, vascular injury and several ophthalmic diseases has become evident. Tetrahydropalmatine, as the index component of Corydalis yanhusuo W. T. Wang, is inseparable from protecting cardiovascular system, yet its role in angiogenesis has been poorly characterized. We have demonstrated the binding potential of THP and VEGFR2 using molecular docking based on the clinical experience of traditional Chinese medicine in the pretest study. Here, we identified tetrahydropalmatine (THP) as one proangiogenic trigger via regulation of arginine biosynthesis by pharmacological assays and DESI-MSI/GC-MS based metabolomics. First, the proangiogenic effects of THP were evaluated by quail chorioallantoic membrane test in vivo and multiple models of endothelial cells in vitro. According to virtual screening, the main mechanisms of THP (2/5 of the top terms with smaller p-value) were metabolic pathways. Hence, metabolomics was applied for the main mechanisms of THP and results showed the considerable metabolite difference in arginine biosynthesis (p < 0.05) altered by THP. Finally, correlated indicators were deteced using targeted metabolomics and pharmacological assays for validation, and results suggested the efficacy of THP on citrulline to arginine flux, arginine biosynthesis, and endothelial VEGFR2 expression sequentially, leading to the promotion of angiogenesis. Overall, this manuscript identified THP as the proangiogenic trigger with the potential to develop as pharmacological agents for unmet clinical needs.


Assuntos
Indutores da Angiogênese/farmacologia , Arginina/biossíntese , Alcaloides de Berberina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica , Codorniz , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
3.
J Ethnopharmacol ; 322: 117652, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151178

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vascular disease (VD) is a kind of common disease harmful to the health of the middle-aged and elderly, which has the characteristics of long treatment cycle and high recurrence rate, and without effective method to treat so far. Traditional Chinese medicine (TCM) has the characteristics of multi-components and multi-targets to treat diseases. Kai-Xin-San is a TCM formula applied for treating psychiatric diseases such as depression in China for thousands of years, and it has been used in clinical treatment of VD. But up to now, its active composition and mechanism are not clear. AIM OF THE STUDY: To explore the effective components of Kai-Xin-San, investigate the effect of Kai-Xin-San on angiogenesis, screen and verify the related targets and possible mechanisms of Kai-Xin-San against VD. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap MS was performed to identify the chemical components of Kai-Xin-San. The mechanism of multi-components, multi-targets, and multi-pathways of Kai-Xin-San in the treatment of VD were explored by network pharmacology. And then, quail chick chorioallantoic membrane (qCAM) assays were used to evaluate the vascular protective activity of Kai-Xin-San. Evaluation of angiogenesis by calculating the relative vessels area. The levels of VEGFA and Akt1 in qCAM were measured by RT-PCR. Twenty-five male SD rats were randomly divided into the sham group, model group, Donepezil (0.45 mg/kg) group, Kai-Xin-San low dose group (0.1575 g/kg), Kai-Xin-San high dose group (0.63 g/kg). Two-vessel occlusion (2-VO) rat model is established to evaluate the therapeutic effect of Kai-Xin-San pretreatment. Hematoxylin-eosin (HE) staining is conducted to detect the morphological changes of neurons in the hippocampus. RESULTS: Data showed that 62 compounds were identified in Kai-Xin-San. The network pharmacology results showed 73 compounds in Kai-Xin-San play a role in the treatment of VD, such as Ginsenoside Rh4, kaempferol, and Poricoic acid C. A total of 7 main targets are predicted, including Akt1, TNF and so on. Kai-Xin-San could increase VEGFA and Akt1 expression, promote angiogenesis and regulate the PI3K-Akt signaling pathway. The results depict that Kai-Xin-San has dose-dependently improved the cognitive function in 2-VO model rats. It has also been showed that Kai-Xin-San can rescue neuron damage in the hippocampus. CONCLUSION: The complex chemical components of Kai-Xin-San play a synergistic role in the treatment of VD, and involve multiple pathways and targets. To protect blood vessels by promoting angiogenesis is one of the potential mechanisms of Kai-Xin-San in the treatment of VD. This study reveals that Kai-Xin-San protects the 2-VO model rats from ischemic injury by alleviating neuron damage in the hippocampus.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Idoso , Pessoa de Meia-Idade , Ratos , Masculino , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Simulação de Acoplamento Molecular
4.
J Pharm Biomed Anal ; 229: 115369, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996615

RESUMO

Currently, drugs are limited to treating pediatric pneumonia in clinical practice. It is urgent to find one new precise prevention and control therapy. The dynamically changing biomarkers during the development of pediatric pneumonia could help diagnose this disease, determine its severity, assess the risk of future events, and guide its treatment. Dexamethasone has been recognized as an effective agent with anti-inflammatory activity. However, its mechanisms against pediatric pneumonia remain unclear. In this study, spatial metabolomics was used to reveal the potential and characteristics of dexamethasone. Specifically, bioinformatics was first applied to find the critical biomarkers of differential expression in pediatric pneumonia. Subsequently, Desorption Electrospray Ionization mass spectrometry imaging-based metabolomics screened the differential metabolites affected by dexamethasone. Then, a gene-metabolite interaction network was built to mark functional correlation pathways for exploring integrated information and core biomarkers related to the pathogenesis and etiology of pediatric pneumonia. Further, these were validated by molecular biology and targeted metabolomics. As a result, genes of Cluster of Differentiation19, Fc fragment of IgG receptor IIb, Cluster of Differentiation 22, B-cell linker, Cluster of Differentiation 79B and metabolites of Triethanolamine, Lysophosphatidylcholine(18:1(9Z)), Phosphatidylcholine(16:0/16:0), phosphatidylethanolamine(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)) were identified as the critical biomarkers in pediatric pneumonia. B cell receptor signaling pathway and glycerophospholipid metabolism were integrally analyzed as the main pathways of these biomarkers. The above data were illustrated using a Lipopolysaccharides-induced lung injury juvenile rat model. This work will provide evidence for the precise treatment of pediatric pneumonia.


Assuntos
Medicamentos de Ervas Chinesas , Pneumonia , Ratos , Animais , Metabolômica/métodos , Biomarcadores/metabolismo , Pneumonia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Dexametasona/farmacologia
5.
Front Pharmacol ; 14: 1135264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214436

RESUMO

Introduction: Chuanxiong, a traditional Chinese medicine, has been proved to treat a variety of cardiovascular and cerebrovascular diseases by promoting angiogenesis. However, the mechanisms of Chuanxiong's pro-angiogenesis is currently unknown. This study aimed to uncover the effect and mechanisms of Chuanxiong promoting angiogenesis in vivo and in vitro. Methods: First, potential targets were predicted by network pharmacology analysis, and PPI network was established and the pathways were enriched. Then, the chorioallantoic membrane test on quails was applied to assess the proangiogenic effects in vivo. As well, to evaluate the effects in vitro, real-time PCR, western blot analysis, the scratch test, and the tube formation experiment were used. Subsequently, the major metabolic pathways were analyzed using non-targeted metabolomics. Results: As a result of network pharmacological analysis, 51 collective targets of Chuanxiong and angiogenesis were identified, which are mainly associated with PI3K/AKT/Ras/MAPK pathway. And the biological verification results showed that Chuanxiong could increase the vessel numbers and vessel area in qCAM models. Meanwhile, Chuanxiong contributed to HUVEC proliferation, tube formation, migration, by encouraging scratch healing rates and boosting tube branch points. In addition, the levels of VEGFR2, MAPK and PI3K were elevated compared to the control group. The western blot analysis also confirmed Chuanxiong could promote an increase in AKT, FOXO1 and Ras. Furtheremore, metabolomic results showed that the proangiogenic effect of Chuanxiong is associated with glycine, serine and threonine metabolism. Discussion: In conclusion, this study clarified that Chuanxiong could promote angiogenesis in vivo and in vitro via regulating PI3K/AKT/Ras/MAPK pathway.

6.
Phytomedicine ; 104: 154295, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35802998

RESUMO

BACKGROUND: Zedoray oil (ZO) is the main component of Curcuma zedoaria, one traditional herb used for dispersing stasis clinically in China. Previously, the potential of ZO was discovered against lethal and acute liver injury (ALI) mice with little impact on the immune, which deserved further study. METHODS: An approach combined systems pharmacology with GC-MS metabolomics was applied for predicting pathways affected by ZO. Subsequently, H2O2 and tertbutyl hydroperoxide (t-BHP) were respectively applied to induce the ALI model in vitro for validation. RESULTS: First, systems pharmacology and intracellular metabolites suggested that ZO might regulate oxidative stress via PI3K/Akt/FoxO1 pathway, TCA cycle, pantothenate, and CoA biosynthesis, beta-alanine metabolism, and propanoate metabolism. Further, levels of ALT, AST, ROS, T-AOC, MDA, GR, ΔΨm, and related proteins affected by ZO had been detected to validate the above mechanisms using dual cell models. CONCLUSION: ZO could protect the L02 cells against ALI by regulating the PI3K/Akt/FoxO1 pathway, as well as restore the function of mitochondria and redox imbalance damaged by toxicants. This work has uncovered the nonimmune mechanisms of ZO against ALI to provide the basis for relevant research and disease treatment.


Assuntos
Peróxido de Hidrogênio , Farmacologia em Rede , Animais , Cromatografia Gasosa-Espectrometria de Massas , Fígado , Metabolômica , Camundongos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
7.
Front Chem ; 9: 786627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957048

RESUMO

Glutathione (GSH) is the most abundant non-protein thiol in biofluids, enabling diverse physiological functions. Among the proposed methods for GSH detection, ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) has the advantages of high sensitivity and efficiency. In this study, a novel analytical method was developed for the determination of GSH using supramolecular solvent (SUPRAS)-based dispersive liquid-liquid microextraction (DLLME) and UHPLC-HRMS. N-Laurylmaleimide was dissolved in tetrahydrofuran, which served three functions: 1) precipitate the proteins present in the biofluid sample, 2) provide a reaction environment for derivatization, and 3) enable the use of SUPRAS as the dispersing agent. Critical parameters were optimized based on single factor testing and response surface methodology. The established method was validated in terms of linearity, accuracy, precision, and successful quantitative analysis of GSH in saliva, urine, and plasma samples. Experimental results showed that SUPRAS as an extraction solvent was particularly suitable for the extraction of GSH from complex matrices. The current study provides a useful tool for accurate measurements of GSH concentrations, which could potentially be used for clinical diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA