RESUMO
Recent studies have revealed that long noncoding RNAs (lncRNAs) are closely linked to several human diseases, providing new opportunities for their use in detection and therapy. Many graph propagation and similarity fusion approaches can be used for predicting potential lncRNA-disease associations. However, existing similarity fusion approaches suffer from noise and self-similarity loss in the fusion process. To address these problems, a new prediction approach, termed SSMF-BLNP, based on organically combining selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP), is proposed in this paper to predict lncRNA-disease associations. In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. The fusion process assigns weights to each initial similarity network and introduces a unit matrix that can reduce noise and compensate for the loss of self-similarity. In BLNP, the initial lncRNA-disease associations are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation. The propagation was then performed on the self-similarity network obtained from SSMF to derive the scoring matrix for predicting the relationships between lncRNAs and diseases. Experimental results showed that SSMF-BLNP performed better than seven other state of-the-art approaches. Furthermore, a case study demonstrated up to 100% and 80% accuracy in 10 lncRNAs associated with hepatocellular carcinoma and 10 lncRNAs associated with renal cell carcinoma, respectively. The source code and datasets used in this paper are available at: https://github.com/RuiBingo/SSMF-BLNP.
Assuntos
RNA Longo não Codificante , Humanos , Algoritmos , Biologia Computacional/métodos , RNA Longo não Codificante/genética , Software , Carcinoma Hepatocelular/genética , Carcinoma de Células Renais/genética , Neoplasias Hepáticas/genética , Neoplasias Renais/genéticaRESUMO
The use of matrix completion methods to predict the association between microbes and diseases can effectively improve treatment efficiency. However, the similarity measures used in the existing methods are often influenced by various factors such as neighbourhood size, choice of similarity metric, or multiple parameters for similarity fusion, making it challenging. Additionally, matrix completion is currently limited by the sparsity of the initial association matrix, which restricts its predictive performance. To address these problems, we propose a matrix completion method based on adaptive neighbourhood similarity and sparse constraints (ANS-SCMC) for predict microbe-disease potential associations. Adaptive neighbourhood similarity learning dynamically uses the decomposition results as effective information for the next learning iteration by simultaneously performing local manifold structure learning and decomposition. This approach effectively preserves fine local structure information and avoids the influence of weight parameters directly involved in similarity measurement. Additionally, the sparse constraint-based matrix completion approach can better handle the sparsity challenge in the association matrix. Finally, the algorithm we proposed has achieved significantly higher predictive performance in the validation compared to several commonly used prediction methods proposed to date. Furthermore, in the case study, the prediction algorithm achieved an accuracy of up to 80% for the top 10 microbes associated with type 1 diabetes and 100% for Crohn's disease respectively.
Assuntos
Algoritmos , Humanos , Biologia Computacional/métodos , Microbiota , Doença de Crohn/microbiologiaRESUMO
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV) has led to a huge health and economic crises. However, the research required to develop new drugs and vaccines is very expensive in terms of labor, money, and time. Owing to recent advances in data science, drug-repositioning technologies have become one of the most promising strategies available for developing effective treatment options. Using the previously reported human drug virus database (HDVD), we proposed a model to predict possible drug regimens based on a weighted reconstruction-based linear label propagation algorithm (WLLP). For the drug-virus association matrix, we used the weighted K-nearest known neighbors method for preprocessing and label propagation of the network based on the linear neighborhood similarity of drugs and viruses to obtain the final prediction results. In the framework of 10 times 10-fold cross-validated area under the receiver operating characteristic (ROC) curve (AUC), WLLP exhibited excellent performance with an AUC of 0.8828 ± 0.0037 and an area under the precision-recall curve of 0.5277 ± 0.0053, outperforming the other four models used for comparison. We also predicted effective drug regimens against SARS-CoV-2, and this case study showed that WLLP can be used to suggest potential drugs for the treatment of COVID-19.
RESUMO
Accumulating evidence has demonstrated various associations of long non-coding RNAs (lncRNAs) with human diseases, such as abnormal expression due to microbial influences that cause disease. Gaining a deeper understanding of lncRNA-disease associations is essential for disease diagnosis, treatment, and prevention. In recent years, many matrix decomposition methods have also been used to predict potential lncRNA-disease associations. However, these methods do not consider the use of microbe-disease association information to enrich disease similarity, and also do not make more use of similarity information in the decomposition process. To address these issues, we here propose a correction-based similarity-constrained probability matrix decomposition method (SCCPMD) to predict lncRNA-disease associations. The microbe-disease associations are first used to enrich the disease semantic similarity matrix, and then the logistic function is used to correct the lncRNA and disease similarity matrix, and then these two corrected similarity matrices are added to the probability matrix decomposition as constraints to finally predict the potential lncRNA-disease associations. The experimental results show that SCCPMD outperforms the five advanced comparison algorithms. In addition, SCCPMD demonstrated excellent prediction performance in a case study for breast cancer, lung cancer, and renal cell carcinoma, with prediction accuracy reaching 80, 100, and 100%, respectively. Therefore, SCCPMD shows excellent predictive performance in identifying unknown lncRNA-disease associations.