Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 23(Suppl 4): 381, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590257

RESUMO

BACKGROUND: Previous studies on plant long noncoding RNAs (lncRNAs) lacked consistency and suffered from many factors like heterogeneous data sources and experimental protocols, different plant tissues, inconsistent bioinformatics pipelines, etc. For example, the sequencing of RNAs with poly(A) tails excluded a large portion of lncRNAs without poly(A), and use of regular RNA-sequencing technique did not distinguish transcripts' direction for lncRNAs. The current study was designed to systematically discover and analyze lncRNAs across eight evolutionarily representative plant species, using strand-specific (directional) and whole transcriptome sequencing (RiboMinus) technique. RESULTS: A total of 39,945 lncRNAs (25,350 lincRNAs and 14,595 lncNATs) were identified, which showed molecular features of lncRNAs that are consistent across divergent plant species but different from those of mRNA. Further, transposable elements (TEs) were found to play key roles in the origination of lncRNA, as significantly large number of lncRNAs were found to contain TEs in gene body and promoter region, and transcription of many lncRNAs was driven by TE promoters. The lncRNA sequences were divergent even in closely related species, and most plant lncRNAs were genus/species-specific, amid rapid turnover in evolution. Evaluated with PhastCons scores, plant lncRNAs showed similar conservation level to that of intergenic sequences, suggesting that most lincRNAs were young and with short evolutionary age. INDUCED BY PHOSPHATE STARVATION (IPS) was found so far to be the only plant lncRNA group with conserved motifs, which may play important roles in the adaptation of terrestrial life during migration from aquatic to terrestrial. Most highly and specially expressed lncRNAs formed co-expression network with coding genes, and their functions were believed to be closely related to their co-expression genes. CONCLUSION: The study revealed novel features and complexity of lncRNAs in plants through systematic analysis, providing important insights into the origination and evolution of plant lncRNAs.


Assuntos
RNA Longo não Codificante , Biologia Computacional/métodos , Elementos de DNA Transponíveis , RNA Longo não Codificante/genética , RNA Mensageiro , RNA de Plantas/genética , Análise de Sequência de RNA , Transcriptoma , Sequenciamento do Exoma
2.
Nucleic Acids Res ; 46(15): e90, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860393

RESUMO

In contrast to genome editing, which introduces genetic changes at the DNA level, disrupting or editing gene transcripts provides a distinct approach to perturbing a genetic system, offering benefits complementary to classic genetic approaches. To develop a new toolset for manipulating RNA, we first implemented a member of the type VI CRISPR systems, Cas13a from Leptotrichia shahii (LshCas13a), in Schizosaccharomyces pombe, an important model organism employed by biologists to study key cellular mechanisms conserved from yeast to humans. This approach was shown to knock down targeted endogenous gene transcripts with different efficiencies. Second, we engineered an RNA editing system by tethering an inactive form of LshCas13a (dCas13) to the catalytic domain of human adenosine deaminase acting on RNA type 2 (hADAR2d), which was shown to be programmable with crRNA to target messenger RNAs and precisely edit specific nucleotide residues. We optimized system parameters using a dual-fluorescence reporter and demonstrated the utility of the system in editing randomly selected endogenous gene transcripts. We further used it to restore the transposition of retrotransposon Tf1 mutants in fission yeast, providing a potential novel toolset for retrovirus manipulation and interference.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Leptotrichia/enzimologia , Edição de RNA/genética , Ribonucleases/genética , Schizosaccharomyces/genética , Proteínas de Bactérias/metabolismo , Regulação Fúngica da Expressão Gênica , Mutagênese Insercional , RNA Fúngico/genética , RNA Fúngico/metabolismo , Reprodutibilidade dos Testes , Retroelementos/genética , Ribonucleases/metabolismo , Schizosaccharomyces/metabolismo
3.
PLoS Genet ; 12(7): e1006191, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467689

RESUMO

The hydrolytic deamination of adenosine to inosine (A-to-I editing) in precursor mRNA induces variable gene products at the post-transcription level. How and to what extent A-to-I RNA editing diversifies transcriptome is not fully characterized in the evolution, and very little is known about the selective constraints that drive the evolution of RNA editing events. Here we present a study on A-to-I RNA editing, by generating a global profile of A-to-I editing for a phylogeny of seven Drosophila species, a model system spanning an evolutionary timeframe of approximately 45 million years. Of totally 9281 editing events identified, 5150 (55.5%) are located in the coding sequences (CDS) of 2734 genes. Phylogenetic analysis places these genes into 1,526 homologous families, about 5% of total gene families in the fly lineages. Based on conservation of the editing sites, the editing events in CDS are categorized into three distinct types, representing events on singleton genes (type I), and events not conserved (type II) or conserved (type III) within multi-gene families. While both type I and II events are subject to purifying selection, notably type III events are positively selected, and highly enriched in the components and functions of the nervous system. The tissue profiles are documented for three editing types, and their critical roles are further implicated by their shifting patterns during holometabolous development and in post-mating response. In conclusion, three A-to-I RNA editing types are found to have distinct evolutionary dynamics. It appears that nervous system functions are mainly tested to determine if an A-to-I editing is beneficial for an organism. The coding plasticity enabled by A-to-I editing creates a new class of binary variations, which is a superior alternative to maintain heterozygosity of expressed genes in a diploid mating system.


Assuntos
Evolução Molecular , Edição de RNA/genética , Seleção Genética/genética , Transcriptoma/genética , Adenosina/genética , Animais , Sequência Conservada/genética , Drosophila/genética , Éxons/genética , Inosina/genética , Filogenia
4.
BMC Genomics ; 18(Suppl 1): 1042, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28198676

RESUMO

BACKGROUND: Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RESULTS: RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. CONCLUSIONS: The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Selaginellaceae/genética , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Fenótipo , Selaginellaceae/metabolismo
5.
BMC Genomics ; 18(Suppl 1): 951, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28198677

RESUMO

BACKGROUND: Lateral Organ Boundaries Domain (LBD) genes arise from charophyte algae and evolve essential functions in land plants in regulating organ development and secondary metabolism. Although diverse plant species have been investigated to construct the phylogeny of LBD gene family, a detailed and reliable ancestry that characterizes their evolutionary patterns has not been revealed. RESULTS: We develop an improved bioinformatic method that allows robust detection of 431 LBD genes in 11 high-quality land plant genomes. Phylogenetic analysis classifies the LBD genes into six subfamilies which support the existence of 7 ancient gene lineages. Phylogenetic relationship and gene collinearity are combined to retrace 11 ancestor genes for seed plants and 18 ancestor genes for angiosperms, which improves the resolution of LBD gene ancestry. The ancient gene lineages are strictly preserved in current plant genomes, including the previously controversial class IB gene in Selaginella moellendorphii, suggesting extreme reluctance of LBD genes to be lost during evolution. Meanwhile, whole-genome and dispersed gene duplications substantially expand LBD gene family in angiosperms, and elaborate functions of LBD genes through frequent expression pattern change and protein sequence variation. CONCLUSIONS: Through phylogenetic and gene collinearity analyses, we retrace the landscape of LBD gene ancestry which lays foundation for elucidating evolutionary diversification of LBD genes in land plants.


Assuntos
Evolução Molecular , Genes de Plantas , Família Multigênica , Plantas/genética , Análise por Conglomerados , Duplicação Gênica , Perfilação da Expressão Gênica , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Plantas/classificação
6.
J Exp Clin Cancer Res ; 43(1): 72, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454445

RESUMO

BACKGROUND: The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS: Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS: Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS: Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Monócitos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T/metabolismo , Imunoterapia , Microambiente Tumoral , Calgranulina B/metabolismo
7.
Genome Biol ; 24(1): 75, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069604

RESUMO

Single-molecule detection and phasing of A-to-I RNA editing events remain an unresolved problem. Long-read and PCR-free nanopore native RNA sequencing offers a great opportunity for direct RNA editing detection. Here, we develop a neural network model, DeepEdit, that not only recognizes A-to-I editing events in single reads of Oxford Nanopore direct RNA sequencing, but also resolves the phasing of RNA editing events on transcripts. We illustrate the robustness of DeepEdit by applying it to Schizosaccharomyces pombe and Homo sapiens transcriptome data. We anticipate DeepEdit to be a powerful tool for the study of RNA editing from a new perspective.


Assuntos
Nanoporos , Humanos , Edição de RNA , RNA/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Bases
8.
Mol Plant ; 16(12): 1990-2003, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37849250

RESUMO

Plants can synthesize a wide range of terpenoids in response to various environmental cues. However, the specific regulatory mechanisms governing terpenoid biosynthesis at the cellular level remain largely elusive. In this study, we employed single-cell RNA sequencing to comprehensively characterize the transcriptome profile of cotton leaves and established a hierarchical transcriptional network regulating cell-specific terpenoid production. We observed substantial expression levels of genes associated with the biosynthesis of both volatile terpenes (such as ß-caryophyllene and ß-myrcene) and non-volatile gossypol-type terpenoids in secretory glandular cells. Moreover, two novel transcription factors, namely GoHSFA4a and GoNAC42, are identified to function downstream of the Gossypium PIGMENT GLAND FORMATION genes. Both transcription factors could directly regulate the expression of terpenoid biosynthetic genes in secretory glandular cells in response to developmental and environmental stimuli. For convenient retrieval of the single-cell RNA sequencing data generated in this study, we developed a user-friendly web server . Our findings not only offer valuable insights into the precise regulation of terpenoid biosynthesis genes in cotton leaves but also provide potential targets for cotton breeding endeavors.


Assuntos
Redes Reguladoras de Genes , Gossypium , Gossypium/genética , Gossypium/metabolismo , Melhoramento Vegetal , Terpenos/metabolismo , Transcriptoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Análise de Sequência de RNA , Regulação da Expressão Gênica de Plantas
9.
Genome Biol ; 23(1): 25, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039061

RESUMO

Models developed using Nanopore direct RNA sequencing data from in vitro synthetic RNA with all adenosine replaced by N6-methyladenosine (m6A) are likely distorted due to superimposed signals from saturated m6A residues. Here, we develop a neural network, DENA, for m6A quantification using the sequencing data of in vivo transcripts from Arabidopsis. DENA identifies 90% of miCLIP-detected m6A sites in Arabidopsis and obtains modification rates in human consistent to those found by SCARLET, demonstrating its robustness across species. We sequence the transcriptome of two additional m6A-deficient Arabidopsis, mtb and fip37-4, using Nanopore and evaluate their single-nucleotide m6A profiles using DENA.


Assuntos
Arabidopsis , Sequenciamento por Nanoporos , Nanoporos , Adenosina/análogos & derivados , Arabidopsis/genética , Humanos , Redes Neurais de Computação , RNA , RNA Mensageiro/genética , Transcriptoma
10.
Genomics Proteomics Bioinformatics ; 20(4): 702-714, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33631426

RESUMO

Genome-scale metabolomics analysis is increasingly used for pathway and function discovery in the post-genomics era. The great potential offered by developed mass spectrometry (MS)-based technologies has been hindered, since only a small portion of detected metabolites were identifiable so far. To address the critical issue of low identification coverage in metabolomics, we adopted a deep metabolomics analysis strategy by integrating advanced algorithms and expanded reference databases. The experimental reference spectra and in silico reference spectra were adopted to facilitate the structural annotation. To further characterize the structure of metabolites, two approaches were incorporated into our strategy, i.e., structural motif search combined with neutral loss scanning and metabolite association network. Untargeted metabolomics analysis was performed on 150 rice cultivars using ultra-performance liquid chromatography coupled with quadrupole-Orbitrap MS. Consequently, a total of 1939 out of 4491 metabolite features in the MS/MS spectral tag (MS2T) library were annotated, representing an extension of annotation coverage by an order of magnitude in rice. The differential accumulation patterns of flavonoids between indica and japonica cultivars were revealed, especially O-sulfated flavonoids. A series of closely-related flavonolignans were characterized, adding further evidence for the crucial role of tricin-oligolignols in lignification. Our study provides an important protocol for exploring phytochemical diversity in other plant species.


Assuntos
Oryza , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Oryza/genética , Metabolômica/métodos , Algoritmos , Flavonoides
11.
Nat Commun ; 6: 8734, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26521696

RESUMO

To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of 'breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes.


Assuntos
Evolução Molecular , Proteínas de Insetos/genética , Insetos/genética , Trans-Splicing , Sequência de Aminoácidos , Animais , Sequência Conservada , Insetos/classificação , Modelos Genéticos , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA