Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.606
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888493

RESUMO

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Assuntos
Povo Asiático/genética , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , Genética , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Interleucina-7/genética , Fenótipo
2.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888494

RESUMO

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Assuntos
Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Feminino , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla/métodos , Hematopoese/genética , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Cell ; 172(5): 1091-1107.e17, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474909

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies are poised to reshape the current cell-type classification system. However, a transcriptome-based single-cell atlas has not been achieved for complex mammalian systems. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using simple, inexpensive devices. Using Microwell-seq, we analyzed more than 400,000 single cells covering all of the major mouse organs and constructed a basic scheme for a mouse cell atlas (MCA). We reveal a single-cell hierarchy for many tissues that have not been well characterized previously. We built a web-based "single-cell MCA analysis" pipeline that accurately defines cell types based on single-cell digital expression. Our study demonstrates the wide applicability of the Microwell-seq technology and MCA resource.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Células 3T3 , Animais , Custos e Análise de Custo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/economia , Camundongos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/economia , Análise de Célula Única/economia
4.
Immunity ; 55(3): 527-541.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231421

RESUMO

The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Estruturas Linfoides Terciárias , Carcinoma de Células Renais/terapia , Feminino , Humanos , Imunoglobulina G , Neoplasias Renais/terapia , Masculino , Plasmócitos , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
5.
Cell ; 166(5): 1147-1162.e15, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565344

RESUMO

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.


Assuntos
Processamento Alternativo , Córtex Cerebral/embriologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Animais , Centrossomo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA
6.
Nat Rev Mol Cell Biol ; 19(9): 547-562, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29858604

RESUMO

PTEN is a potent tumour suppressor, and its loss of function is frequently observed in both heritable and sporadic cancers. PTEN has phosphatase-dependent and phosphatase-independent (scaffold) activities in the cell and governs a variety of biological processes, including maintenance of genomic stability, cell survival, migration, proliferation and metabolism. Even a subtle decrease in PTEN levels and activity results in cancer susceptibility and favours tumour progression. Regulation of PTEN has therefore emerged as a subject of intense research in tumour biology. Recent discoveries, including the existence of distinct PTEN isoforms and the ability of PTEN to form dimers, have brought to light new modes of PTEN function and regulation. These milestone findings have in turn opened new therapeutic avenues for cancer prevention and treatment through restoration of PTEN tumour suppressor activity.


Assuntos
Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Progressão da Doença , Humanos , Neoplasias/patologia
7.
Nature ; 626(7997): 72-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297173

RESUMO

Recent breakthroughs in fibre technology have enabled the assembly of functional materials with intimate interfaces into a single fibre with specific geometries1-11, delivering diverse functionalities over a large area, for example, serving as sensors, actuators, energy harvesting and storage, display, and healthcare apparatus12-17. As semiconductors are the critical component that governs device performance, the selection, control and engineering of semiconductors inside fibres are the key pathways to enabling high-performance functional fibres. However, owing to stress development and capillary instability in the high-yield fibre thermal drawing, both cracks and deformations in the semiconductor cores considerably affect the performance of these fibres. Here we report a mechanical design to achieve ultralong, fracture-free and perturbation-free semiconductor fibres, guided by a study on stress development and capillary instability at three stages of the fibre formation: the viscous flow, the core crystallization and the subsequent cooling stage. Then, the exposed semiconductor wires can be integrated into a single flexible fibre with well-defined interfaces with metal electrodes, thereby achieving optoelectronic fibres and large-scale optoelectronic fabrics. This work provides fundamental insights into extreme mechanics and fluid dynamics with geometries that are inaccessible in traditional platforms, essentially addressing the increasing demand for flexible and wearable optoelectronics.

9.
Nature ; 611(7935): 365-373, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323783

RESUMO

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Assuntos
Movimento Celular , Líquido Extracelular , Metástase Neoplásica , Neoplasias , Viscosidade , Animais , Embrião de Galinha , Camundongos , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Canais de Cátion TRPV , Peixe-Zebra/metabolismo , Metástase Neoplásica/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Via de Sinalização Hippo , Esferoides Celulares/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina , Proteína rhoA de Ligação ao GTP , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pulmão/patologia
10.
N Engl J Med ; 391(7): 585-597, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828946

RESUMO

BACKGROUND: Osimertinib is a recommended treatment for advanced non-small-cell lung cancer (NSCLC) with an epidermal growth factor receptor (EGFR) mutation and as adjuvant treatment for resected EGFR-mutated NSCLC. EGFR tyrosine kinase inhibitors have shown preliminary efficacy in unresectable stage III EGFR-mutated NSCLC. METHODS: In this phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with unresectable EGFR-mutated stage III NSCLC without progression during or after chemoradiotherapy to receive osimertinib or placebo until disease progression occurred (as assessed by blinded independent central review) or the regimen was discontinued. The primary end point was progression-free survival as assessed by blinded independent central review. RESULTS: A total of 216 patients who had undergone chemoradiotherapy were randomly assigned to receive osimertinib (143 patients) or placebo (73 patients). Osimertinib resulted in a significant progression-free survival benefit as compared with placebo: the median progression-free survival was 39.1 months with osimertinib versus 5.6 months with placebo, with a hazard ratio for disease progression or death of 0.16 (95% confidence interval [CI], 0.10 to 0.24; P<0.001). The percentage of patients who were alive and progression free at 12 months was 74% (95% CI, 65 to 80) with osimertinib and 22% (95% CI, 13 to 32) with placebo. Interim overall survival data (maturity, 20%) showed 36-month overall survival among 84% of patients with osimertinib (95% CI, 75 to 89) and 74% with placebo (95% CI, 57 to 85), with a hazard ratio for death of 0.81 (95% CI, 0.42 to 1.56; P = 0.53). The incidence of adverse events of grade 3 or higher was 35% in the osimertinib group and 12% in the placebo group; radiation pneumonitis (majority grade, 1 to 2) was reported in 48% and 38%, respectively. No new safety concerns emerged. CONCLUSIONS: Treatment with osimertinib resulted in significantly longer progression-free survival than placebo in patients with unresectable stage III EGFR-mutated NSCLC. (Funded by AstraZeneca; LAURA ClinicalTrials.gov number, NCT03521154.).


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acrilamidas/uso terapêutico , Acrilamidas/efeitos adversos , Compostos de Anilina/uso terapêutico , Compostos de Anilina/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Método Duplo-Cego , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Indóis , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Estadiamento de Neoplasias , Intervalo Livre de Progressão , Pirimidinas , /uso terapêutico
11.
Proc Natl Acad Sci U S A ; 121(25): e2402384121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865272

RESUMO

Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.


Assuntos
Mitocôndrias , Oxirredutases , Proteínas de Plantas , Epitélio Pigmentado da Retina , Animais , Mitocôndrias/metabolismo , Camundongos , Oxirredutases/metabolismo , Oxirredutases/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia
12.
Proc Natl Acad Sci U S A ; 121(23): e2322283121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814873

RESUMO

Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.

13.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
14.
Blood ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226462

RESUMO

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

15.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Assuntos
Moléculas de Adesão Celular , Fator VIII , Cininogênios , Lectinas Tipo C , Receptores de Superfície Celular , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Polimorfismo de Nucleotídeo Único , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Trombose/genética , Trombose/sangue , Estudos de Associação Genética , Masculino , Células Endoteliais/metabolismo , Feminino
16.
Chem Rev ; 124(18): 10509-10576, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39167109

RESUMO

Global warming and energy crises have motivated the development of renewable energy and its energy carriers. Green hydrogen is the most promising renewable energy carrier and will be fundamental to future energy conversion and storage systems. Solid Oxide Electrolysis Cells (SOECs) are a promising green hydrogen production technology featuring high electrical efficiency, no noble metal catalyst usage, and reversible operation. This review provides a timely summary of the latest SOEC progress, covering developments at various levels, from cells to stacks to systems. Cell/stack components, configurations, advanced electrode material/fabrication, and novel characterization methods are discussed. Electrochemical and durable performance for each cell/stack configuration is reviewed, focusing on degradation mechanisms and associated mitigation strategies. SOEC system integration with renewable energy and downstream users is outlined, showing flexibility, robustness, scalability, viability, and energy efficiency. Challenges of cost and durability are expected to be overcome by innovation in material, fabrication, production, integration, and operation. Overall, this comprehensive review identifies the SOEC commercialization bottleneck, encourages further technology development, and envisions a future green hydrogen society with net-zero carbon emissions.

17.
Nature ; 582(7813): 534-538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555454

RESUMO

Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis1. This endosymbiosis-which is critical for the maintenance of coral reef ecosystems-is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems2. The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral3, and use this species as a model to investigate coral-alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts.


Assuntos
Antozoários/citologia , Antozoários/genética , Linhagem da Célula/genética , Dinoflagellida/metabolismo , Simbiose/genética , Animais , Antozoários/imunologia , Antozoários/metabolismo , Carbono/metabolismo , Diferenciação Celular/genética , Recifes de Corais , Dinoflagellida/imunologia , Dinoflagellida/fisiologia , Ecossistema , Endocitose , Genoma/genética , Fagocitose , Fotossíntese , RNA-Seq , Análise de Célula Única , Simbiose/imunologia , Transcriptoma
18.
Nature ; 581(7808): 303-309, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32214235

RESUMO

Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex systems1. However, a comprehensive single-cell atlas has not been achieved for humans. Here we use single-cell mRNA sequencing to determine the cell-type composition of all major human organs and construct a scheme for the human cell landscape (HCL). We have uncovered a single-cell hierarchy for many tissues that have not been well characterized. We established a 'single-cell HCL analysis' pipeline that helps to define human cell identity. Finally, we performed a single-cell comparative analysis of landscapes from human and mouse to identify conserved genetic networks. We found that stem and progenitor cells exhibit strong transcriptomic stochasticity, whereas differentiated cells are more distinct. Our results provide a useful resource for the study of human biology.


Assuntos
Células/citologia , Células/metabolismo , Análise de Célula Única/métodos , Adulto , Animais , Povo Asiático , Diferenciação Celular , Linhagem Celular , Separação Celular , China , Bases de Dados Factuais , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Etnicidade , Feto/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunidade , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Especificidade de Órgãos , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sequência de RNA , Análise de Célula Única/instrumentação , Processos Estocásticos
19.
Nature ; 580(7801): 93-99, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238934

RESUMO

Prostate cancer is the second most common cancer in men worldwide1. Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients2,3. However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.


Assuntos
Povo Asiático/genética , Epigênese Genética , Epigenômica , Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , China , Estudos de Coortes , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/patologia , RNA-Seq , Transcriptoma/genética
20.
PLoS Genet ; 19(7): e1010825, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37523391

RESUMO

Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.


Assuntos
Neoplasias da Mama , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Predisposição Genética para Doença , Pulmão , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Neoplasias da Mama/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA