Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 333: 121968, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494223

RESUMO

In this study, an edible composite film with pH-responsive release was prepared by the formation of Schiff-base imine bonds between chitosan (CS) and oxidized fucoidan (CS-FU) and encapsulating cinnamaldehyde (CA). Fourier-transform infrared, 1H nuclear magnetic resonance, X-ray photoelectron spectroscopy and gel permeation chromatography confirmed the formation of CS-FU. The result showed that, oxidation degree of FU, degrees of substitution, average molecular weight and yield of CS-FU were 25.57 %, 10.48 %, 23.3094 kDa and 45.63 ± 0.64 %, respectively. Scanning electron microscopy revealed that CA was encapsulated within the CS-FU matrix. Increasing the CA content could improve the mechanical properties and ultraviolet and visible-light resistances of the CS-FU coating films but enhance their water vapor permeabilities. The release of CA increased as the pH decreased, and the antibacterial rate at pH 5 was 2.3-fold higher than that at pH 7, indicating good pH-responsive release and antibacterial properties in mildly acidic environments. Owing to their excellent properties, the CA/CS-FU-0.1 coating films maintained the appearance and quality indices of litchis for at least eight days. Hence, multifunctional composite coating films are prospective eco-friendly and intelligently responsive controlled-release packaging materials for fruit preservation.


Assuntos
Acroleína/análogos & derivados , Quitosana , Litchi , Polissacarídeos , Frutas/química , Quitosana/química , Estudos Prospectivos , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Concentração de Íons de Hidrogênio
2.
Biol Trace Elem Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954322

RESUMO

This study investigated heavy metal contamination in dried fish sold in Guangzhou, China, and evaluated the resultant non-carcinogenic and carcinogenic health risks. Dried fish samples were purchased from Baiyun, Tianhe, Panyu, and Yuexiu districts in Guangzhou, where the population is substantial. They were randomly acquired in bustling supermarkets and farmers' markets, targeting the most popular dried fish in these areas. Sixty samples from five dried fish types (Stolephorus chinensis, Thamnaconus modestus, Nemipterus-virgatus, river fish, Ctenopharyngodon idella) were analyzed for chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) content. Quantification of the heavy metals were carried out by inductively coupled plasma mass spectrometry (ICP-MS) for Cr, As, Cd, and Pb, and an automatic mercury analyzer for Hg. The median concentration of these heavy metals in dried fish were 0.358 mg/kg, 2.653 mg/kg, 0.032 mg/kg, 0.083 mg/kg, and 0.042 mg/kg, respectively. Pollution severity was ranked as dried Nemipterus-virgatus > dried Stolephorus chinensis > dried Thamnaconus modestus > dried river fish > dried Ctenopharyngodon idella, with As being the most predominant pollutant. All fish types showed severe As pollution. Non-carcinogenic risks were identified in the consumption of dried Nemipterus-virgatus and dried Stolephorus chinensis for both genders, while potential carcinogenic risks were associated with four of the fish types. Women faced higher health risks than men from dried fish consumption. Consequently, we advise consumers to minimize their intake of dried fish and regulatory agencies conduct regular monitoring of heavy metal levels in commercially available dried fish to avert potential health risks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA