Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
World J Clin Cases ; 12(8): 1510-1516, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38576806

RESUMO

BACKGROUND: The prognosis for patients with advanced metastatic cervix cancer (MCC) is poor, and this disease continues to pose a considerable therapeutic challenge. Despite the administration of first-line regimens consisting of cisplatin, paclitaxel, and bevacizumab, survival rates for patients with metastasis remain poor. The emergence of bispecific antibodies (BsAbs) offers a novel treatment option for patients diagnosed with MCC. CASE SUMMARY: In this report, we present a patient with MCC who was treated with cadonilimab monotherapy at a dose of 6 mg/kg every two weeks after chemotherapy was proven to be intolerable. The patient exhibited a sustained complete response for a duration of 6 months, demonstrating an optimistic outlook. CONCLUSION: This case illustrates the considerable efficacy of cadonilimab for treating advanced MCC. Therefore, BsAb therapy is a promising strategy for effectively treating patients with advanced MCC and should be considered as an option when patients are intolerant to standard chemotherapy.

2.
Adv Sci (Weinh) ; : e2406193, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099450

RESUMO

Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.

3.
Adv Mater ; 36(16): e2311992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183353

RESUMO

Advances in modern industrial technology continue to place stricter demands on engineering polymeric materials, but simultaneously possessing superior strength and toughness remains a daunting challenge. Herein, a pioneering flexible cage-reinforced supramolecular elastomer (CSE) is reported that exhibits superb robustness, tear resistance, anti-fatigue, and shape memory properties, achieved by innovatively introducing organic imide cages (OICs) into supramolecular networks. Intriguingly, extremely small amounts of OICs make the elastomer stronger, significantly improving mechanical strength (85.0 MPa; ≈10-fold increase) and toughness (418.4 MJ m-3; ≈7-fold increase). Significantly, the cooperative effect of gradient hydrogen bonds and OICs is experimentally and theoretically demonstrated as flexible nodes, enabling more robust supramolecular networks. In short, the proposed strengthening strategy of adding flexible cages effectively balances the inherent conflict between material strength and toughness, and the prepared CSEs are anticipated to be served in large-scale devices such as TBMs in the future.

4.
Curr Protein Pept Sci ; 24(2): 178-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573046

RESUMO

BACKGROUND: p21-activated kinase 1 (PAK1) is abnormally expressed in glioma, but its roles and mechanisms in glioma remain unclear. This study aims to explore the effects of PAK1 inhibition on the proliferation, migration and invasion of glioma cells. METHODS: Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU) incorporation and colony formation assays were performed to evaluate the effects of PAK1 inhibition on the proliferation of glioma cells. The cell cycle distribution and apoptosis rate of glioma cells were explored by flow cytometry. Wound healing and Transwell assays were performed to investigate the effects of PAK1 inhibition on glioma cell migration and invasion. The orthotopic xenograft glioma model was used to probe the effect of PAK1 silencing on glioma tumor formation. RESULTS: PAK1 inhibition arrested cells at the G1 phase and induced apoptosis of glioma cells. Moreover, the knockdown of PAK1 decreased the protein expression levels of MDM2, p38, p-p38, cyclin D1, CDK4, Bcl-2, MMP2, MMP9, and cofilin but increased the protein levels of p53, Bax, p21 and cleaved caspase-3. A xenograft glioma model confirmed that the silencing of PAK1 repressed the formation of tumors induced by U87 cell transplantation. CONCLUSION: This study showed that PAK1 inhibition impedes the proliferation, migration, and invasion of glioma cells.


Assuntos
Glioma , Quinases Ativadas por p21 , Humanos , Proliferação de Células , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Movimento Celular , Apoptose , Linhagem Celular Tumoral
5.
Mol Neurobiol ; 58(5): 2118-2132, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411238

RESUMO

The tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion. Publicly available data revealed that TSG101 mRNA was significantly upregulated in glioma tissues, and high levels of TSG101 were associated with poor prognosis in glioma patients. Western blot and immunohistochemistry experiments further showed that the expression level of TSG101 protein was significantly upregulated in glioma patients, especially in the patients with high-grade glioma. The functional studies showed that knockdown of TSG101 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression of TSG101 facilitated them. Mechanistic studies indicated that the proliferation, migration, and invasion induced by TSG101 in human glioma were related to AKT/GSK3ß/ß-catenin and RhoC/Cofilin signaling pathways. In conclusion, the above results suggest that the expression of TSG101 is elevated in glioma patients, which accelerates the proliferation, migration, and invasion of glioma cells by regulating the AKT/GSK3ß/ß-catenin and RhoC/Cofilin pathways.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Despolimerização de Actina/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA